scholarly journals Improved Mg2+-Based Reverse Transcriptase Assay for Detection of Primate Retroviruses

1999 ◽  
Vol 37 (6) ◽  
pp. 1704-1708 ◽  
Author(s):  
Johnna F. Sears ◽  
Roy Repaske ◽  
Arifa S. Khan

The reverse transcriptase (RT) assay is a simple, relatively inexpensive, widely used assay that can detect all retroviruses (known and novel retroviruses as well as infectious and defective retroviruses) on the basis of the divalent cation requirement of their RT enzyme, i.e., Mg2+ or Mn2+. Descriptions of various RT assays have been published; however, they cannot be directly applied to the analysis of biological products or clinical samples without further standardization to determine the lower limit of virus detection (sensitivity), assay variability (reproducibility), or ability to detect different retroviruses (specificity). We describe the detection of type E and type D primate retroviruses, which may be pathogenic for humans, by a new 32P-based, Mg2+-containing RT assay. The results show that the sensitivity of detection is <3.2 50% tissue culture infective doses (TCID50s) for human immunodeficiency virus type 1 (HIV-1) and <1 TCID50 for simian immunodeficiency virus isolated from a rhesus macaque (SIVmac). Analysis of recombinant HIV-1 RT enzyme indicated that 10−5 U, which is equivalent to 4.25 × 104 virions, could be detected. Additionally, genetically distinct type D retroviruses such as simian AIDS retrovirus and squirrel monkey retrovirus were also detected in the assay with similar sensitivities. Thus, the improved RT assay can be used to detect genetically divergent Mg2+-dependent retroviruses of human and simian origin that can infect human cells and that therefore pose a potential health risk to humans.

2006 ◽  
Vol 51 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Nicolas Sluis-Cremer ◽  
Chih-Wei Sheen ◽  
Shannon Zelina ◽  
Pedro S. Argoti Torres ◽  
Urvi M. Parikh ◽  
...  

ABSTRACT The K70E mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has become more prevalent in clinical samples, particularly in isolates derived from patients for whom triple-nucleoside regimens that include tenofovir (TNV), abacavir, and lamivudine (3TC) failed. To elucidate the molecular mechanism by which this mutation confers resistance to these nucleoside RT inhibitors (NRTI), we conducted detailed biochemical analyses comparing wild-type (WT), K70E, and K65R HIV-1 RT. Pre-steady-state kinetic experiments demonstrate that the K70E mutation in HIV-1 RT allows the enzyme to discriminate between the natural deoxynucleoside triphosphate substrate and the NRTI triphosphate (NRTI-TP). Compared to the WT enzyme, K70E RT showed 2.1-, 2.3-, and 3.5-fold-higher levels of resistance toward TNV-diphosphate, carbovir-TP, and 3TC-TP, respectively. By comparison, K65R RT demonstrated 12.4-, 12.0-, and 13.1-fold-higher levels of resistance, respectively, toward the same analogs. NRTI-TP discrimination by the K70E (and K65R) mutation was primarily due to decreased rates of NRTI-TP incorporation and not to changes in analog binding affinity. The K65R and K70E mutations also profoundly impaired the ability of RT to excise 3′-azido-2′,3′-dideoxythymidine monophosphate (AZT-MP) and other NRTI-MP from the 3′ end of a chain-terminated primer. When introduced into an enzyme with the thymidine analog mutations (TAMs) M41L, L210W, and T215Y, the K70E mutation inhibited ATP-mediated excision of AZT-MP. Taken together, these findings indicate that the K70E mutation, like the K65R mutation, reduces susceptibility to NRTI by selectively decreasing NRTI-TP incorporation and is antagonistic to TAM-mediated nucleotide excision.


2003 ◽  
Vol 47 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Martin Stürmer ◽  
Schlomo Staszewski ◽  
Hans-Wilhelm Doerr ◽  
Brendan Larder ◽  
Stuart Bloor ◽  
...  

ABSTRACT Zidovudine resistance (ZDV-R) is associated with classic genotypic changes at codons 41, 67, 70, 210, 215, and 219 of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) gene as well as with the multinucleoside resistance (MNR) complexes (Q151M MNR complex; 6-bp insertion/A62V complex). In addition, enhanced resistance to ZDV in the context of the classic ZDV mutations plus the M184V mutation has been associated with additional mutations at positions 208, 211, 214, and 333. In this study we investigated phenotypic ZDV-R determined by a recombinant virus assay (Antivirogram; Virco) in 223 clinical samples in relation to the above genotypic changes. 150 out of 223 clinical samples had the M184V mutation. Phenotypic ZDV-R ranged from 0.3- to 5,338-fold. Sixteen samples (15 with high ZDV-R ranging from 90- to 3,571-fold) contained MNR-associated patterns. Analysis of classic mutational patterns broadly demonstrated increasing ZDV-R with increasing number of ZDV mutations. A comparable correlation was obtained when ZDV-R was analyzed only relative to the T215Y/F mutation. Site-directed mutagenesis experiments investigating the influence of the additional mutations H208Y, R211K, and L214F on ZDV-R resulted in a 7.4- or 21-fold increase in ZDV-R when the R211K/L214F or H208Y/R211K/L214F mutations, respectively, were added to a highly ZDV-R virus. In the clinical sample data set we analyzed, the combination of R211K/L214F appeared most frequently. The H208Y change was detected only in highly ZDV-R viruses, whereas the G333E/D change was distributed equally. All changes were independent of the M184V mutation. A 2.4- or 8-fold increase in ZDV-R was observed in the clinical samples with high ZDV-R containing the R211K/L214F or H208Y/R211K/L214F mutations, respectively. We have shown that the combination of the additional mutations H208Y, R211K, and L214F in HIV-1 RT may influence ZDV-R and should be considered when assessing ZDV-R.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


2015 ◽  
Vol 396 (12) ◽  
pp. 1315-1323
Author(s):  
Bianca Heyn ◽  
Nicole Pogodalla ◽  
Susanne Brakmann

Abstract Changes of Leu109 and Arg448 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have as yet not been associated with altered fitness. However, in a recent study, we described that the simultaneous substitution of L109 and R448 by methionine leads to an error-producing polymerase phenotype that is not observed for the isolated substitutions. The double mutant increased the error rate of DNA-dependent DNA synthesis 3.1-fold as compared to the wildtype enzyme and showed a mutational spectrum with a fraction of 28% frameshift mutations and 48% transitions. We show here that weaker binding of DNA:DNA primer-templates as indicated by an increased dissociation rate constant (koff) could account for the higher frameshift error rate. Furthermore, we were able to explain the prevalence of transition mutations with the finding that HIV-1 RT variant L109M/R448M preferred misincorporation of C opposite A and elongation of C:A mismatches.


2001 ◽  
Vol 75 (10) ◽  
pp. 4832-4842 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Two distinct mechanisms can be envisioned for resistance of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) to nucleoside analogs: one in which the mutations interfere with the ability of HIV-1 RT to incorporate the analog, and the other in which the mutations enhance the excision of the analog after it has been incorporated. It has been clear for some time that there are mutations that selectively interfere with the incorporation of nucleoside analogs; however, it has only recently been proposed that zidovudine (AZT) resistance can involve the excision of the nucleoside analog after it has been incorporated into viral DNA. Although this proposal resolves some important issues, it leaves some questions unanswered. In particular, how do the AZT resistance mutations enhance excision, and what mechanism(s) causes the excision reaction to be relatively specific for AZT? We have used both structural and biochemical data to develop a model. In this model, several of the mutations associated with AZT resistance act primarily to enhance the binding of ATP, which is the most likely pyrophosphate donor in the in vivo excision reaction. The AZT resistance mutations serve to increase the affinity of RT for ATP so that, at physiological ATP concentrations, excision is reasonably efficient. So far as we can determine, the specificity of the excision reaction for an AZT-terminated primer is not due to the mutations that confer resistance, but depends instead on the structure of the region around the HIV-1 RT polymerase active site and on its interactions with the azido group of AZT. Steric constraints involving the azido group cause the end of an AZT 5′-monophosphate-terminated primer to preferentially reside at the nucleotide binding site, which favors excision.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2007 ◽  
Vol 52 (1) ◽  
pp. 329-332 ◽  
Author(s):  
Robert A. Smith ◽  
Geoffrey S. Gottlieb ◽  
Donovan J. Anderson ◽  
Crystal L. Pyrak ◽  
Bradley D. Preston

ABSTRACT Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3′-azido-3′-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document