scholarly journals Assessment of Student Skills for Critiquing Published Primary Scientific Literature Using a Primary Trait Analysis Scale

2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Manuel F. Varela ◽  
Marvin M. F. Lutnesky ◽  
Marcy P. Osgood
2005 ◽  
Vol 6 (1) ◽  
pp. 20-27
Author(s):  
MANUEL F. VARELA ◽  
MARVIN M. F. LUTNESKY ◽  
MARCY P. OSGOOD

Instructor evaluation of progressive student skills in the analysis of primary literature is critical for the development of these skills in young scientists. Students in a senior or graduate-level one-semester course in Immunology at a Masters-level comprehensive university were assessed for abilities (primary traits) to recognize and evaluate the following elements of a scientific paper: Hypothesis and Rationale, Significance, Methods, Results, Critical Thinking and Analysis, and Conclusions. We tested the hypotheses that average recognition scores vary among elements and that scores change with time differently by trait. Recognition scores (scaled 1 to 5), and differences in scores were analyzed using analysis of variance (ANOVA), regression, and analysis of covariance (ANCOVA) ( n = 10 papers over 103 days). By multiple comparisons testing, we found that recognition scores statistically fell into two groups: high scores (for Hypothesis and Rationale, Significance, Methods, and Conclusions) and low scores (for Results and Critical Thinking and Analysis). Recognition scores only significantly changed with time (increased) for Hypothesis and Rationale and Results. ANCOVA showed that changes in recognition scores for these elements were not significantly different in slope (F 1,16 = 0.254, P = 0.621) but the Results trait was significantly lower in elevation (F 1,17 = 12.456, P = 0.003). Thus, students improved with similar trajectories, but starting and ending with lower Results scores. We conclude that students have greatest difficulty evaluating Results and critically evaluating scientific validity. Our findings show extant student skills, and the significant increase in some traits shows learning. This study demonstrates that students start with variable recognition skills and that student skills may be learned at differential rates. Faculty can use these findings or the primary trait analysis scoring scale to focus on specific paper elements for which they desire to improve recognition.


2020 ◽  
Vol 5 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Laurence B. Leonard

Purpose The current “specific language impairment” and “developmental language disorder” discussion might lead to important changes in how we refer to children with language disorders of unknown origin. The field has seen other changes in terminology. This article reviews many of these changes. Method A literature review of previous clinical labels was conducted, and possible reasons for the changes in labels were identified. Results References to children with significant yet unexplained deficits in language ability have been part of the scientific literature since, at least, the early 1800s. Terms have changed from those with a neurological emphasis to those that do not imply a cause for the language disorder. Diagnostic criteria have become more explicit but have become, at certain points, too narrow to represent the wider range of children with language disorders of unknown origin. Conclusions The field was not well served by the many changes in terminology that have transpired in the past. A new label at this point must be accompanied by strong efforts to recruit its adoption by clinical speech-language pathologists and the general public.


2016 ◽  
Vol 224 (4) ◽  
pp. 240-246 ◽  
Author(s):  
Mélanie Bédard ◽  
Line Laplante ◽  
Julien Mercier

Abstract. Dyslexia is a phenomenon for which the brain correlates have been studied since the beginning of the 20th century. Simultaneously, the field of education has also been studying dyslexia and its remediation, mainly through behavioral data. The last two decades have seen a growing interest in integrating neuroscience and education. This article provides a quick overview of pertinent scientific literature involving neurophysiological data on functional brain differences in dyslexia and discusses their very limited influence on the development of reading remediation for dyslexic individuals. Nevertheless, it appears that if certain conditions are met – related to the key elements of educational neuroscience and to the nature of the research questions – conceivable benefits can be expected from the integration of neurophysiological data with educational research. When neurophysiological data can be employed to overcome the limits of using behavioral data alone, researchers can both unravel phenomenon otherwise impossible to document and raise new questions.


2020 ◽  
Vol 61 (4) ◽  
pp. 342-348
Author(s):  
Harris L. Friedman ◽  
Douglas A. MacDonald ◽  
James C. Coyne

2006 ◽  
Author(s):  
Ezemenari M. Obasi ◽  
Lan-Sze Pang ◽  
Jennifer S. Mrnak ◽  
Kristine L. Jehle ◽  
Yesenia Ortiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document