scholarly journals The Host Protein Staufen1 Participates in Human Immunodeficiency Virus Type 1 Assembly in Live Cells by Influencing pr55Gag Multimerization

2007 ◽  
Vol 81 (12) ◽  
pp. 6216-6230 ◽  
Author(s):  
Laurent Chatel-Chaix ◽  
Levon Abrahamyan ◽  
Céline Fréchina ◽  
Andrew J. Mouland ◽  
Luc DesGroseillers

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associates with the HIV-1 genomic RNA and the viral precursor Gag protein, pr55Gag. In this report, we tested whether Stau1 modulates pr55Gag assembly using a new and specific pr55Gag oligomerization assay based on bioluminescence resonance energy transfer (BRET) in both live cells and extracts after cell fractionation. Our results show that both the overexpression and knockdown of Stau1 increase the pr55Gag-pr55Gag BRET levels, suggesting a role for Stau1 in regulating pr55Gag oligomerization during assembly. This effect of Stau1 on pr55Gag oligomerization was observed only in membranes, a cellular compartment in which pr55Gag assembly primarily occurs. Consistently, expression of Stau1 harboring a vSrc myristylation signal led to a 6.5-fold enrichment of Stau1 in membranes and a corresponding enhancement in the Stau1-mediated effect on pr55Gag-pr55Gag BRET, demonstrating that Stau1 acts on assembly when targeted to membranes. A role for Stau1 in the formation of particles is further supported by the detection of membrane-associated detergent-resistant pr55Gag complexes and the increase of virus-like particle release when Stau1 expression levels are modulated. Our results indicate that Stau1 influences HIV-1 assembly by modulating pr55Gag-pr55Gag interactions, as shown in a live cell interaction assay. This likely occurs when Stau1 interacts with membrane-associated assembly intermediates.

2004 ◽  
Vol 24 (7) ◽  
pp. 2637-2648 ◽  
Author(s):  
Laurent Chatel-Chaix ◽  
Jean-Francois Clément ◽  
Catherine Martel ◽  
Véronique Bériault ◽  
Anne Gatignol ◽  
...  

ABSTRACT Staufen is a host protein that is selectively incorporated into human immunodeficiency virus type 1 (HIV-1) particles in a poorly defined process that involves the selection of HIV-1 genomic RNA for encapsidation and the activity of its third double-stranded RNA-binding domain (dsRBD3). To better understand this, we characterized its interactions with pr55Gag, the principal mediator of HIV-1 genomic RNA encapsidation. Chimeric proviruses harboring wild-type or mutant forms of Staufen were expressed in 293T cells. Cell fractionation analyses demonstrated that Staufen cosedimented with pr55Gag within detergent-resistant, trypsin-sensitive complexes that excluded mature capsid and matrix proteins. Coimmunoprecipitation and bioluminescence resonance energy transfer assays demonstrated a specific and direct interaction between Staufen and the nucleocapsid domain of pr55Gag in vitro and in live cells. This interaction is shown here to be mediated by Staufen's dsRBD3, with a contribution from its C-terminal domain. Immunoprecipitation and reverse transcription-PCR analyses showed that the 9-kb genomic RNA was found within Staufen-containing immune complexes. Spliced HIV-1 RNAs were not detected in these Staufen complexes, indicating a preferential association of Staufen with the 9-kb species. These results substantiate that Staufen and pr55Gag interact directly during HIV-1 expression. Knockdown of Staufen expression by small interfering RNAs in HIV-1-expressing cells demonstrated that this cellular protein was important for the generation of infectious virus. These data show that Staufen, pr55Gag, and genomic RNA are part of the same intracellular complex and support a role for Staufen in pr55Gag function in viral assembly, genomic RNA encapsidation, and the generation of infectious viral particles.


2005 ◽  
Vol 79 (23) ◽  
pp. 14498-14506 ◽  
Author(s):  
Ayna Alfadhli ◽  
Tenzin Choesang Dhenub ◽  
Amelia Still ◽  
Eric Barklis

ABSTRACT The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.


2008 ◽  
Vol 82 (20) ◽  
pp. 9937-9950 ◽  
Author(s):  
Nathaniel W. Martinez ◽  
Xiaoxiao Xue ◽  
Reem G. Berro ◽  
Geri Kreitzer ◽  
Marilyn D. Resh

ABSTRACT Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.


2006 ◽  
Vol 80 (12) ◽  
pp. 5670-5677 ◽  
Author(s):  
Seiji Hamamoto ◽  
Hironori Nishitsuji ◽  
Teruo Amagasa ◽  
Mari Kannagi ◽  
Takao Masuda

ABSTRACT Retroviral integrase (IN) catalyzes the integration of viral cDNA into a host chromosome. Additional roles have been suggested for IN, including uncoating, reverse transcription, and nuclear import of the human immunodeficiency virus type 1 (HIV-1) genome. However, the underlying mechanism is largely unknown. Here, using a yeast two-hybrid system, we identified a survival motor neuron (SMN)-interacting protein 1 (Gemin2) that binds to HIV-1 IN. Reduction of Gemin2 with small interfering RNA duplexes (siGemin2) dramatically reduced HIV-1 infection in human primary monocyte-derived macrophages and also reduced viral cDNA synthesis. In contrast, siGemin2 did not affect HIV-1 expression from the integrated proviral DNA. Although Gemin2 was undetectable in cell-free viral particles, coimmunoprecipitation experiments using FLAG-tagged Gemin2 strongly suggested that Gemin2 interacts with the incoming viral genome through IN. Further experiments reducing SMN or other SMN-interacting proteins suggested that Gemin2 might act on HIV-1 either alone or with unknown proteins to facilitate efficient viral cDNA synthesis soon after infection. Thus, we provide the evidence for a novel host protein that binds to HIV-1 IN and facilitates viral cDNA synthesis and subsequent steps that precede integration in vivo.


2004 ◽  
Vol 78 (2) ◽  
pp. 1026-1031 ◽  
Author(s):  
Tsutomu Murakami ◽  
Sherimay Ablan ◽  
Eric O. Freed ◽  
Yuetsu Tanaka

ABSTRACT We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR+) or inactive (PR−) viral PR. We observed that PR− virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.


2005 ◽  
Vol 79 (14) ◽  
pp. 9134-9144 ◽  
Author(s):  
Eva Gottwein ◽  
Hans-Georg Kräusslich

ABSTRACT Ubiquitin is important for the release of human immunodeficiency virus type 1 (HIV-1) and several other retroviruses, but the functional significance of Gag ubiquitination is unknown. To address this problem, we decided to analyze Gag ubiquitination in detail. A low percentage of the HIV-1 p6 protein has previously been shown to be ubiquitinated, and published mutagenesis data suggested that Gag ubiquitination is largely lost upon mutation of the two lysine residues in p6. In this study, we show that Gag proteins lacking the p6 domain or the two lysine residues within p6 are ubiquitinated at levels comparable to those of the wild-type Gag protein. We detected monoubiquitinated forms of the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins in mature virus preparations. Protease digestion of Gag polyproteins extracted from immature virions indicated that ubiquitinated MA, CA, and possibly NC are as abundant as ubiquitinated p6. The HIV-1 late-domain motifs PTAP and LRSLF were not required for Gag ubiquitination, and mutation of the PTAP motif even resulted in an increase in the amount of Gag-Ub conjugates detected. Finally, at steady state, ubiquitinated Gag proteins were not enriched in either membrane-associated or virus-derived Gag fractions. In summary, these results indicate that HIV-1 Gag can be monoubiquitinated in all domains and that ubiquitination of lysine residues outside p6 may thus contribute to viral release and/or infectivity.


1998 ◽  
Vol 72 (6) ◽  
pp. 4667-4677 ◽  
Author(s):  
Laurence Garnier ◽  
Lee Ratner ◽  
Benjamin Rovinski ◽  
Shi-Xian Cao ◽  
John W. Wills

ABSTRACT The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.


2009 ◽  
Vol 83 (20) ◽  
pp. 10448-10459 ◽  
Author(s):  
Tareq Jaber ◽  
Christopher R. Bohl ◽  
Gentry L. Lewis ◽  
Charles Wood ◽  
John T. West ◽  
...  

ABSTRACT Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions.


2006 ◽  
Vol 80 (5) ◽  
pp. 2405-2417 ◽  
Author(s):  
Melody R. Davis ◽  
Jiyang Jiang ◽  
Jing Zhou ◽  
Eric O. Freed ◽  
Christopher Aiken

ABSTRACT The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55Gag. Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.


2000 ◽  
Vol 74 (13) ◽  
pp. 5845-5855 ◽  
Author(s):  
Marc Tritel ◽  
Marilyn D. Resh

ABSTRACT The assembly and budding of lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), are mediated by the Gag protein precursor, but the molecular details of these processes remain poorly defined. In this study, we have combined pulse-chase techniques with density gradient centrifugation to identify, isolate, and characterize sequential kinetic intermediates in the lentivirus assembly process. We show that newly synthesized HIV-1 Gag rapidly forms cytoplasmic protein complexes that are resistant to detergent treatment, sensitive to protease digestion, and degraded intracellularly. A subpopulation of newly synthesized Gag binds membranes within 5 to 10 min and over several hours assembles into membrane-bound complexes of increasing size and/or density that can be resolved on Optiprep density gradients. These complexes likely represent assembly intermediates because they are not observed with assembly-defective Gag mutants and can be chased into extracellular viruslike particles. At steady state, nearly all of the Gag is present as membrane-bound complexes in various stages of assembly. The identification of sequential assembly intermediates provides the first demonstration that HIV-1 particle assembly proceeds via an ordered process. Assembly intermediates should serve as attractive targets for the design of antiviral agents that interfere with the process of particle production.


Sign in / Sign up

Export Citation Format

Share Document