scholarly journals Four Conserved Cysteine Residues of the Hepatitis B Virus Polymerase Are Critical for RNA Pregenome Encapsidation

2009 ◽  
Vol 83 (16) ◽  
pp. 8032-8040 ◽  
Author(s):  
Seahee Kim ◽  
Jehan Lee ◽  
Wang-Shick Ryu

ABSTRACT Hepadnaviruses replicate via reverse transcription of an RNA template, the pregenomic RNA (pgRNA). Although hepadnaviral polymerase (Pol) and retroviral reverse transcriptase are distantly related, some of their features are distinct. In particular, Pol contains two additional N-terminal subdomains, the terminal protein and spacer subdomains. Since much of the spacer subdomain can be deleted without detrimental effects to hepatitis B virus (HBV) replication, this subdomain was previously thought to serve only as a spacer that links the terminal protein and reverse transcriptase subdomains. Unexpectedly, we found that the C terminus of the spacer subdomain is indispensable for the encapsidation of pgRNA. Alanine-scanning mutagenesis revealed that four conserved cysteine residues, three at the C terminus of the spacer subdomain and one at the N terminus of the reverse transcriptase subdomain, are critical for encapsidation. The inability of the mutant Pol proteins to incorporate into nucleocapsid particles, together with other evidence, argued that the four conserved cysteine residues are critical for RNA binding. One implication is that these four cysteine residues might form a putative zinc finger motif. Based on these findings, we speculate that the RNA binding activity of HBV Pol may be mediated by this newly identified putative zinc finger motif.

2011 ◽  
Vol 92 (8) ◽  
pp. 1809-1816 ◽  
Author(s):  
Youn-Chul Shin ◽  
Sunju Park ◽  
Wang-Shick Ryu

Hepadnaviruses, including human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV), replicate their DNA genome through reverse transcription. Although hepadnaviral polymerase (Pol) is distantly related to retroviral reverse transcriptases, some of its features are distinct. In particular, in addition to the reverse transcriptase and RNase H domains, which are commonly encoded by retroviral reverse transcriptases, the N-terminally extended terminal protein (TP) domain confers unique features such as protein-priming capability. Importantly, the TP domain is also essential for encapsidation of the viral RNA pre-genome. To gain further insight into the TP domain, this study used clustered charged residue-to-alanine mutagenesis of HBV Pol. Of the 20 charged residues examined, only one arginine (R105) was critical for RNA encapsidation. This result contrasts with previous findings for DHBV Pol regarding the critical residue of the TP domain required for RNA binding. Firstly, R128 of DHBV Pol, which corresponds to R105 of HBV Pol, was reportedly tolerable to alanine substitution for RNA binding. Secondly, the C-terminal arginine residue of the DHBV Pol TP domain (R183) was shown to be critical for RNA binding, whereas alanine substitution of the corresponding arginine residue of the HBV Pol TP domain (R160) remained able to support RNA encapsidation. Together, these data highlight the divergence between avian and mammalian hepadnaviral Pols with respect to an arginine residue critical for RNA encapsidation.


Virology ◽  
2008 ◽  
Vol 370 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Hee-Young Kim ◽  
Hye-Young Kim ◽  
Jaesung Jung ◽  
Sun Park ◽  
Ho-Joon Shin ◽  
...  

2021 ◽  
Author(s):  
Yasuo Ariumi

Long interspersed element-1 (LINE-1, L1) retrotransposon composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, we found that HBV restricts L1 mobility without inhibiting the L1 promoter activity. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol sequestered L1 ORF1p from P-body and colocalized with L1 ORF1p in cytoplasm, when both proteins were co-expressed. Altogether, HBV Pol seems to restrict L1 mobility through a sequestration of L1 ORF1p from P-body. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.


Sign in / Sign up

Export Citation Format

Share Document