binding cleft
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 69)

H-INDEX

40
(FIVE YEARS 3)

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1802
Author(s):  
Kevin Voth ◽  
Shivani Pasricha ◽  
Ivy Yeuk Wah Chung ◽  
Rachelia R. Wibawa ◽  
Engku Nuraishah Huda E. Zainudin ◽  
...  

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose “reader” proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christian Tüting ◽  
Fotis L. Kyrilis ◽  
Johannes Müller ◽  
Marija Sorokina ◽  
Ioannis Skalidis ◽  
...  

AbstractFound across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ko Sato ◽  
Amarjeet Kumar ◽  
Keisuke Hamada ◽  
Chikako Okada ◽  
Asako Oguni ◽  
...  

AbstractDimethylated histone H3 Lys36 (H3K36me2) regulates gene expression, and aberrant H3K36me2 upregulation, resulting from either the overexpression or point mutation of the dimethyltransferase NSD2, is found in various cancers. Here we report the cryo-electron microscopy structure of NSD2 bound to the nucleosome. Nucleosomal DNA is partially unwrapped, facilitating NSD2 access to H3K36. NSD2 interacts with DNA and H2A along with H3. The NSD2 autoinhibitory loop changes its conformation upon nucleosome binding to accommodate H3 in its substrate-binding cleft. Kinetic analysis revealed that two oncogenic mutations, E1099K and T1150A, increase NSD2 catalytic turnover. Molecular dynamics simulations suggested that in both mutants, the autoinhibitory loop adopts an open state that can accommodate H3 more often than the wild-type. We propose that E1099K and T1150A destabilize the interactions that keep the autoinhibitory loop closed, thereby enhancing catalytic turnover. Our analyses guide the development of specific inhibitors of NSD2.


2021 ◽  
Vol 14 (11) ◽  
pp. 1131
Author(s):  
Marta Gargantilla ◽  
José López-Fernández ◽  
Maria-Jose Camarasa ◽  
Leentje Persoons ◽  
Dirk Daelemans ◽  
...  

The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.


2021 ◽  
Vol 9 ◽  
Author(s):  
Heba E. Elsayed ◽  
Reem A. Kamel ◽  
Reham R. Ibrahim ◽  
Ahmed S. Abdel-Razek ◽  
Mohamed A. Shaaban ◽  
...  

Endophytes are prolific producers of privileged secondary metabolites with diverse therapeutic potential, although their anticancer and antimicrobial potential still have a room for further investigation. Herein, seven known secondary metabolites namely, arugosin C (1), ergosterol (2), iso-emericellin (3), sterigmatocystin (4), dihydrosterigmatocystin (5), versicolorin B (6), and diorcinol (7) were isolated from the rice culture of Aspergillus sp. retrieved from Tecoma stans (L.) Juss. ex Kunth leaves. Their anticancer and antimicrobial activities were evaluated in MTT and agar well diffusion assays, respectively. The cytotoxicity results showed that metabolite 3 displayed the best viability inhibition on the MCF-7 breast cancer cells with IC50 = 225.21 µM, while 5 on the HepG2 hepatocellular carcinoma cells with IC50 = 161.81 µM. 5 demonstrated a 60% apoptotic mode of cell death which is virtually correlated to its high docking affinity to Hsp90 ATP binding cleft (binding score −8.4 Kcal/mol). On the other side, metabolites 4 and 5 displayed promising antimicrobial activity especially on Pseudomonas aeruginosa with MIC = 125 μg/ml. The observed effect may be likely related to their excellent in silico inhibition of the bacterial DNA-gyrase kinase domain (binding score −10.28 Kcal/mol). To the best of our knowledge, this study is the first to report the promising cytotoxic and antibacterial activities of metabolites 3, 4, and 5 which needs further investigation and renovation to therapeutic leads.


2021 ◽  
Author(s):  
Alan Cowman ◽  
Anthony Hodder ◽  
Janni Christensen ◽  
Stephen Scally ◽  
Tony Triglia ◽  
...  

Abstract Plasmepsin IX (PMIX) and X (PMX) are aspartyl proteases of Plasmodium spp. that play essential roles in parasite egress, invasion and development. Consequently, they are important drug targets for Plasmodium falciparum and P. vivax. WM4 and WM382 are potent inhibitors of PMIX and PMX that block invasion of liver and blood stages and transmission to mosquitoes. WM4 specifically inhibits PMX whilst WM382 is a dual inhibitor of PMIX and PMX. To understand the function of PMIX and PMX proteases we identified new protein substrates in P. falciparum and together with detailed kinetic analyses and structural analyses identified key molecular interactions in the active site responsible for the specificity of WM4 and WM382 inhibition. The crystal structures of PMX apo enzyme and the protease/drug complexes of PMX/WM382 and PMX/WM4 for P. falciparum and P. vivax have been solved. We show PMIX and PMX have similar substrate selectivity, however, there are distinct differences for both peptide and full-length protein substrates through differences in localised 3-dimensional structures for the enzyme substrate-binding cleft and substrate interface. The differences in affinities of WM4 and WM382 binding for PMIX and PMX map to variations in surface interactions with each protease in the S' region of the active sites. Crystal structures of PMX reveal interactions and mechanistic detail on the selectivity of drug binding which will be important for further development of clinical candidates against these important molecular targets.


2021 ◽  
Author(s):  
Anthony N. Hodder ◽  
Stephen Scally ◽  
Tony Triglia ◽  
Anna Ngo ◽  
Richard W. Birkinshaw ◽  
...  

Abstract Plasmepsin IX (PMIX) and X (PMX) are aspartyl proteases of Plasmodium spp. that play essential roles in parasite egress, invasion and development. Consequently, they are important drug targets for Plasmodium falciparum and P. vivax. WM4 and WM382 are potent inhibitors of PMIX and PMX that block invasion of liver and blood stages and transmission to mosquitoes. WM4 specifically inhibits PMX whilst WM382 is a dual inhibitor of PMIX and PMX. To understand the function of PMIX and PMX proteases we identified new protein substrates in P. falciparum and together with detailed kinetic analyses and structural analyses identified key molecular interactions in the active site responsible for the specificity of WM4 and WM382 inhibition. The crystal structures of PMX apo enzyme and the protease/drug complexes of PMX/WM382 and PMX/WM4 for P. falciparum and P. vivax have been solved. We show PMIX and PMX have similar substrate selectivity, however, there are distinct differences for both peptide and full-length protein substrates through differences in localised 3-dimensional structures for the enzyme substrate-binding cleft and substrate interface. The differences in affinities of WM4 and WM382 binding for PMIX and PMX map to variations in surface interactions with each protease in the S' region of the active sites. Crystal structures of PMX reveal interactions and mechanistic detail on the selectivity of drug binding which will be important for further development of clinical candidates against these important molecular targets.


2021 ◽  
Author(s):  
Matías Ariel Valiñas ◽  
Arjen ten Have ◽  
Adriana Balbina Andreu

Background: The 4CL/ ACS protein family is well known for its 4-coumarate-CoA ligase (4CL) enzymes but there are many aspects of this family that are still unclear or generally known. Cytosolic class I and class II 4CL enzymes control the biosynthesis of lignin/ suberin and flavonoids, respectively. Many 4CL homologs have broad substrate permissiveness in vitro and have no clear cut function. However, it has been demonstrated unequivocally that a peroxisomal 4CL-like homolog from Arabidopsis efficiently uses p-coumarate for ubiquinone biosynthesis. Another homolog has been shown to act as a fatty acyl-CoA synthetase and yet another as OPDA-CoA ligase. Hence, despite this knowledge, most homologs remain annotated as 4CL-like whereas other researches study the ACS protein family. Results: We set out identify the specific functions of 4CL/ ACS homologs, specifically in order to study the 4CL family in Solanum tuberosum. An in depth phylogenetic analysis was done. Using clustering techniques, functional annotation and taxonomic signals, three major clades were depicted. Clade 1 is composed of class I from monocotyledons, class I from dicotyledons and class II canonical 4CL enzymes subclades. Specificity determining positions and 3D structure analysis shows that clade 2 cytosolic 4CL-like enzymes show a rather different binding cleft and presumably use medium- to long-chain fatty acids. Clade 3 is composed of five subclades, four of which have a broad taxonomic contribution and a similar binding cleft as 4CLs whereas a fifth, specific for dicotyledons shows a significantly different binding pocket. The potato 4CL family comprises four class I (St4CL-I(A-D)) and one class II (St4CL-II) members. Transcript levels of St4CLs and of marker genes of the flavonoid (chalcone synthase, CHS) and suberin (feruloyl-CoA transferase, FHT) pathways were determined by qRT-PCR in flesh and skin from Andean varieties. St4CL-IA was barely detected in the skin of some varieties whereas St4CL-IB did not show a clear pattern. St4CL-IC and St4CL-ID could not be detected. St4CL-II expression pattern was similar to CHS. St4CL-IA and St4CL-IB were induced by wounding as did FHT whereas St4CL-II and CHS expression was repressed. Constitutive and wound-induced expression suggests that St4CL-IA and St4CL-IB isoforms are likely involved in soluble and/ or suberin-bound phenolic compounds while St4CL-II appears to be involved in flavonoid biosynthesis.


2021 ◽  
Vol 22 (13) ◽  
pp. 7136
Author(s):  
Piotr Henryk Małecki ◽  
Paweł Mitkowski ◽  
Elżbieta Jagielska ◽  
Karolina Trochimiak ◽  
Stéphane Mesnage ◽  
...  

The best-characterized members of the M23 family are glycyl-glycine hydrolases, such as lysostaphin (Lss) from Staphylococcus simulans or LytM from Staphylococcus aureus. Recently, enzymes with broad specificities were reported, such as EnpACD from Enterococcus faecalis, that cleaves D,L peptide bond between the stem peptide and a cross-bridge. Previously, the activity of EnpACD was demonstrated only on isolated peptidoglycan fragments. Herein we report conditions in which EnpACD lyses bacterial cells live with very high efficiency demonstrating great bacteriolytic potential, though limited to a low ionic strength environment. We have solved the structure of the EnpACD H109A inactive variant and analyzed it in the context of related peptidoglycan hydrolases structures to reveal the bases for the specificity determination. All M23 structures share a very conserved β-sheet core which constitutes the rigid bottom of the substrate-binding groove and active site, while variable loops create the walls of the deep and narrow binding cleft. A detailed analysis of the binding groove architecture, specificity of M23 enzymes and D,L peptidases demonstrates that the substrate groove, which is particularly deep and narrow, is accessible preferably for peptides composed of amino acids with short side chains or subsequent L and D-isomers. As a result, the bottom of the groove is involved in interactions with the main chain of the substrate while the side chains are protruding in one plane towards the groove opening. We concluded that the selectivity of the substrates is based on their conformations allowed only for polyglycine chains and alternating chirality of the amino acids.


Sign in / Sign up

Export Citation Format

Share Document