scholarly journals The XPO6 Exportin Mediates Herpes Simplex Virus 1 gM Nuclear Release Late in Infection

2020 ◽  
Vol 94 (21) ◽  
Author(s):  
Hugo Boruchowicz ◽  
Josiane Hawkins ◽  
Kendra Cruz-Palomar ◽  
Roger Lippé

ABSTRACT The glycoprotein M of herpes simplex virus 1 (HSV-1) is dynamically relocated from nuclear membranes to the trans-Golgi network (TGN) during infection, but molecular partners that promote this relocalization are unknown. Furthermore, while the presence of the virus is essential for this phenomenon, it is not clear if this is facilitated by viral or host proteins. Past attempts to characterize glycoprotein M (gM) interacting partners identified the viral protein gN by coimmunoprecipitation and the host protein E-Syt1 through a proteomics approach. Interestingly, both proteins modulate the activity of gM on the viral fusion machinery. However, neither protein is targeted to the nuclear membrane and consequently unlikely explains the dynamic regulation of gM nuclear localization. We thus reasoned that gM may transiently interact with other molecules. To resolve this issue, we opted for a proximity-dependent biotin identification (BioID) proteomics approach by tagging gM with a BirA* biotinylation enzyme and purifying BirA substrates on a streptavidin column followed by mass spectrometry analysis. The data identified gM and 170 other proteins that specifically and reproducibly were labeled by tagged gM at 4 or 12 h postinfection. Surprisingly, 35% of these cellular proteins are implicated in protein transport. Upon testing select candidate proteins, we discovered that XPO6, an exportin, is required for gM to be released from the nucleus toward the TGN. This is the first indication of a host or viral protein that modulates the presence of HSV-1 gM on nuclear membranes. IMPORTANCE The mechanisms that enable integral proteins to be targeted to the inner nuclear membrane are poorly understood. Herpes simplex virus 1 (HSV-1) glycoprotein M (gM) is an interesting candidate, as it is dynamically relocalized from nuclear envelopes to the trans-Golgi network (TGN) in a virus- and time-dependent fashion. However, it was, until now, unclear how gM was directed to the nucleus or evaded that compartment later on. Through a proteomic study relying on a proximity-ligation assay, we identified several novel gM interacting partners, many of which are involved in vesicular transport. Analysis of select proteins revealed that XPO6 is required for gM to leave the nuclear membranes late in the infection. This was unexpected, as XPO6 is an exportin specifically associated with actin/profilin nuclear export. This raises some very interesting questions about the interaction of HSV-1 with the exportin machinery and the cargo specificity of XPO6.

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Giulia Tebaldi ◽  
Suzanne M. Pritchard ◽  
Anthony V. Nicola

ABSTRACT Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway. IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Kosuke Takeshima ◽  
Jun Arii ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
Akihisa Kato ◽  
...  

ABSTRACT During nuclear egress of nascent progeny herpesvirus nucleocapsids, the nucleocapsids acquire a primary envelope by budding through the inner nuclear membrane of infected cells into the perinuclear space between the inner and outer nuclear membranes. Herpes simplex virus 1 (HSV-1) UL34 and UL31 proteins form a nuclear egress complex (NEC) and play critical roles in this budding process, designated primary envelopment. To clarify the role of NEC binding to progeny nucleocapsids in HSV-1 primary envelopment, we established an assay system for HSV-1 NEC binding to nucleocapsids and capsid proteins in vitro. Using this assay system, we showed that HSV-1 NEC bound to nucleocapsids and to capsid protein UL25 but not to the other capsid proteins tested (i.e., VP5, VP23, and UL17) and that HSV-1 NEC binding of nucleocapsids was mediated by the interaction of NEC with UL25. UL31 residues arginine-281 (R281) and aspartic acid-282 (D282) were required for efficient NEC binding to nucleocapsids and UL25. We also showed that alanine substitution of UL31 R281 and D282 reduced HSV-1 replication, caused aberrant accumulation of capsids in the nucleus, and induced an accumulation of empty vesicles that were similar in size and morphology to primary envelopes in the perinuclear space. These results suggested that NEC binding via UL31 R281 and D282 to nucleocapsids, and probably to UL25 in the nucleocapsids, has an important role in HSV-1 replication by promoting the incorporation of nucleocapsids into vesicles during primary envelopment. IMPORTANCE Binding of HSV-1 NEC to nucleocapsids has been thought to promote nucleocapsid budding at the inner nuclear membrane and subsequent incorporation of nucleocapsids into vesicles during nuclear egress of nucleocapsids. However, data to directly support this hypothesis have not been reported thus far. In this study, we have present data showing that two amino acids in the membrane-distal face of the HSV-1 NEC, which contains the putative capsid binding site based on the solved NEC structure, were in fact required for efficient NEC binding to nucleocapsids and for efficient incorporation of nucleocapsids into vesicles during primary envelopment. This is the first report showing direct linkage between NEC binding to nucleocapsids and an increase in nucleocapsid incorporation into vesicles during herpesvirus primary envelopment.


2015 ◽  
Vol 89 (15) ◽  
pp. 7799-7812 ◽  
Author(s):  
Yoshitaka Hirohata ◽  
Jun Arii ◽  
Zhuoming Liu ◽  
Keiko Shindo ◽  
Masaaki Oyama ◽  
...  

ABSTRACTHerpesviruses have evolved a unique mechanism for nucleocytoplasmic transport of nascent nucleocapsids: the nucleocapsids bud through the inner nuclear membrane (INM; primary envelopment), and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Little is known about the molecular mechanism of herpesviral de-envelopment. We show here that the knockdown of both CD98 heavy chain (CD98hc) and its binding partner β1 integrin induced membranous structures containing enveloped herpes simplex virus 1 (HSV-1) virions that are invaginations of the INM into the nucleoplasm and induced aberrant accumulation of enveloped virions in the perinuclear space and in the invagination structures. These effects were similar to those of the previously reported mutation(s) in HSV-1 proteins gB, gH, UL31, and/or Us3, which were shown here to form a complex(es) with CD98hc in HSV-1-infected cells. These results suggested that cellular proteins CD98hc and β1 integrin synergistically or independently regulated HSV-1 de-envelopment, probably by interacting directly and/or indirectly with these HSV-1 proteins.IMPORTANCECertain cellular and viral macromolecular complexes, such asDrosophilalarge ribonucleoprotein complexes and herpesvirus nucleocapsids, utilize a unique vesicle-mediated nucleocytoplasmic transport: the complexes acquire primary envelopes by budding through the inner nuclear membrane into the space between the inner and outer nuclear membranes (primary envelopment), and the enveloped complexes then fuse with the outer nuclear membrane to release de-enveloped complexes into the cytoplasm (de-envelopment). However, there is a lack of information on the molecular mechanism of de-envelopment fusion. We report here that HSV-1 recruited cellular fusion regulatory proteins CD98hc and β1 integrin to the nuclear membrane for viral de-envelopment fusion. This is the first report of cellular proteins required for efficient de-envelopment of macromolecular complexes during their nuclear egress.


2009 ◽  
Vol 83 (24) ◽  
pp. 12984-12997 ◽  
Author(s):  
Jie Zhang ◽  
Claus-Henning Nagel ◽  
Beate Sodeik ◽  
Roger Lippé

ABSTRACT Thirteen different glycoproteins are incorporated into mature herpes simplex virus type 1 (HSV-1) virions. Five of them play important roles during entry, while others intervene during egress of the virus. Although HSV-1 gM is not essential in cell culture, its deletion reduces viral yields and promotes syncytium formation. Furthermore, gM is conserved among herpesviruses, is essential for several of them, and can redirect the gD and gH/gL viral glycoproteins from the cell surface to the trans-Golgi network, where gM presumably modulates final capsid envelopment. Late in infection, gM reaches the nuclear envelope and decorates perinuclear virions. This process seemingly requires UL31 and UL34 and occurs when several markers of the trans-Golgi network have relocalized to the nucleus. However, the precise mechanism of gM nuclear targeting is unclear. We now report that gM is quickly and specifically targeted to nuclear membranes in a virus-dependent manner. This occurs prior to the HSV-1-induced reorganization of the trans-Golgi network and before gM enters the secretory pathway. The presence of a high-mannose glycosylation pattern on gM further corroborated these findings. While gM was targeted to the inner nuclear membrane early in infection, its partners gD, gH, gN, VP22, UL31, and UL34 did not colocalize with gM. These data suggest that nuclear gM fulfills an early nuclear function that is independent of its known interaction partners and its function in viral egress.


2009 ◽  
Vol 83 (10) ◽  
pp. 4757-4765 ◽  
Author(s):  
Maryn E. Padula ◽  
Mariam L. Sydnor ◽  
Duncan W. Wilson

ABSTRACT Herpes simplex virus 1 (HSV-1) nucleocapsids exit the nucleus by budding into the inner nuclear membrane, where they exist briefly as primary enveloped virions. These virus particles subsequently fuse their envelopes with the outer nuclear membrane, permitting nucleocapsids to then enter the cytoplasm and complete assembly. We have developed a method to isolate primary enveloped virions from HSV-1-infected cells and subjected the primary enveloped virion preparation to MALDI-MS/MS (matrix-assisted laser desorption ionization-tandem mass spectrometry) analyses. We identified most capsid proteins, a tegument protein (VP22), a glycoprotein (gD), and a cellular protein (annexin A2) in the primary enveloped virion preparation. We determined that annexin A2 does not play an essential role in infection under our experimental conditions. Elucidating the structure and biochemical properties of this unique virus assembly intermediate will provide new insights into HSV-1 biology.


2015 ◽  
Vol 89 (17) ◽  
pp. 8982-8998 ◽  
Author(s):  
Zhuoming Liu ◽  
Akihisa Kato ◽  
Masaaki Oyama ◽  
Hiroko Kozuka-Hata ◽  
Jun Arii ◽  
...  

ABSTRACTTo clarify the function(s) of the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (also designated VP13/14), we screened cells overexpressing UL47 for UL47-binding cellular proteins. Tandem affinity purification of transiently expressed UL47 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that UL47 interacted with cell protein p32 in HSV-1-infected cells. Unlike in mock-infected cells, p32 accumulated at the nuclear rim in HSV-1-infected cells, and this p32 recruitment to the nuclear rim required UL47. p32 formed a complex(es) with HSV-1 proteins UL31, UL34, Us3, UL47, and/or ICP22 in HSV-1-infected cells. All these HSV-1 proteins were previously reported to be important for HSV-1 nuclear egress, in which nucleocapsids bud through the inner nuclear membrane (primary envelopment) and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Like viral proteins UL31, UL34, Us3, and UL47, p32 was detected in primary enveloped virions. p32 knockdown reduced viral replication and induced membranous invaginations adjacent to the nuclear rim containing primary enveloped virions and aberrant localization of UL31 and UL34 in punctate structures at the nuclear rim. These effects of p32 knockdown were reduced in the absence of UL47. Therefore, the effects of p32 knockdown in HSV-1 nuclear egress were similar to those of the previously reported mutation(s) in HSV-1 regulatory proteins for HSV-1 de-envelopment during viral nuclear egress. Collectively, these results suggested that p32 regulated HSV-1 de-envelopment and replication in a UL47-dependent manner.IMPORTANCEIn this study, we have obtained data suggesting that (i) the HSV-1 major virion structural protein UL47 interacted with host cell protein p32 and mediated the recruitment of p32 to the nuclear rim in HSV-1-infected cells; (ii) p32 was a component of the HSV-1 nuclear egress complex (NEC), whose core components were UL31 and UL34; and (iii) p32 regulated HSV-1 de-envelopment during viral nuclear egress. It has been reported that p32 was a component of human cytomegalovirus NEC and was required for efficient disintegration of nuclear lamina, which has been thought to facilitate HSV-1 primary envelopment during viral nuclear egress. Thus, p32 appeared to be a core component of herpesvirus NECs, like UL31 and UL34 homologs in other herpesviruses, and to play multiple roles in herpesvirus nuclear egress.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 727 ◽  
Author(s):  
Kurt Tobler ◽  
Claudia Senn ◽  
Elisabeth M. Schraner ◽  
Mathias Ackermann ◽  
Cornel Fraefel ◽  
...  

Background:Capsids of herpes simplex virus 1 (HSV-1) are assembled in cell nuclei, released into the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope. Alternatively, capsids gain access to the cytoplasm via dilated nuclear pores. They are enveloped by Golgi membranes. Us3 is a non-essential viral kinase that is involved in nucleus-to-cytoplasm translocation, preventing apoptosis and regulation of phospholipid-biosynthesis. Us3-deletion mutants(HSV-1∆Us3) accumulate in the perinuclear space. Nuclear and Golgi membranes proliferate, and homogeneous, proteinaceous structures of unknown identity are deposited in nuclei and cytoplasm. Glycoprotein K (gK), a highly hydrophobic viral protein, is essential for production of infectious progeny virus but, according to the literature, exclusively vital for envelopment of capsids by Golgi membranes. In the absence of Us3, virions remain stuck in the perinuclear space but mature to infectivity without reaching Golgi membranes, suggesting further function of gK than assumed.Methods:We constructed a HSV-1∆Us3 mutant designated CK177∆Us3gK-HA, in which gK was hemagglutinin (HA) epitope-tagged in order to localize gK by immunolabeling using antibodies against HA for light and electron microscopy.Results:CK177∆Us3gK-HA-infected Vero cells showed similar alterations as those reported for other HSV-1∆Us3, including accumulation of virions in the perinuclear space, overproduction of nuclear and Golgi membranes containing electron dense material with staining property of proteins. Immunolabeling using antibodies against HA revealed that gK is overproduced and localized at nuclear membranes, perinuclear virions stuck in the perinuclear space, Golgi membranes and on protein deposits in cytoplasm and nuclei.Conclusions:Us3 is involved in proper assembly of membranes needed for envelopment and incorporation of gK. Without Us3, virions derived by budding at nuclear membranes remain stuck in the perinuclear space but incorporate gK into their envelope to gain infectivity.


2006 ◽  
Vol 81 (2) ◽  
pp. 800-812 ◽  
Author(s):  
Joel D. Baines ◽  
Elizabeth Wills ◽  
Robert J. Jacob ◽  
Janice Pennington ◽  
Bernard Roizman

ABSTRACT It is widely accepted that nucleocapsids of herpesviruses bud through the inner nuclear membrane (INM), but few studies have been undertaken to characterize the composition of these nascent virions. Such knowledge would shed light on the budding reaction at the INM and subsequent steps in the egress pathway. The present study focuses on glycoprotein M (gM), a type III integral membrane protein of herpes simplex virus 1 (HSV-1) that likely contains eight transmembrane domains. The results indicated that gM localized primarily at the perinuclear region, with especially bright staining near the nuclear membrane (NM). Immunogold electron microscopic analysis indicated that, like gB and gD (M. R. Torrisi et al., J. Virol. 66:554-561, 1992), gM localized within both leaflets of the NM, the envelopes of nascent virions that accumulate in the perinuclear space, and the envelopes of cytoplasmic and mature extracellular virus particles. Indirect immunofluorescence studies revealed that gM colocalized almost completely with a marker of the Golgi apparatus and partially with a marker of the trans-Golgi network (TGN), whether or not these markers were displaced to the perinuclear region during infection. gM was also located in punctate extensions and invaginations of the NM induced by the absence of a viral kinase encoded by HSV-1 US3 and within virions located in these extensions. Our findings therefore support the proposition that gM, like gB and gD, becomes incorporated into the virion envelope upon budding through the INM. The localization of viral glycoproteins and Golgi and TGN markers to a perinuclear region may represent a mechanism to facilitate the production of infectious nascent virions, thereby increasing the amount of infectivity released upon cellular lysis.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jun Arii

Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


Sign in / Sign up

Export Citation Format

Share Document