scholarly journals Enterovirus 71 and Coxsackievirus A16 3C Proteases: Binding to Rupintrivir and Their Substrates and Anti-Hand, Foot, and Mouth Disease Virus Drug Design

2011 ◽  
Vol 85 (19) ◽  
pp. 10319-10331 ◽  
Author(s):  
G. Lu ◽  
J. Qi ◽  
Z. Chen ◽  
X. Xu ◽  
F. Gao ◽  
...  
2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Wenping Yang ◽  
Dan Li ◽  
Yi Ru ◽  
Juncui Bai ◽  
Jingjing Ren ◽  
...  

ABSTRACT Foot-and-mouth disease virus (FMDV) is one of the most notorious pathogens in the global livestock industry. To establish an infection, FMDV needs to counteract host antiviral responses. Several studies have shown how FMDV suppresses the type I interferon (IFN) response; however, whether FMDV modulates the integrated autophagy and innate immunity remains largely unknown. Here, the porcine Ras-GAP SH3-binding protein 1 (G3BP1) was shown to promote the retinoic acid-inducible gene I (RIG-I)-like helicase (RLH) signaling by upregulating the expression of RIG-I and melanoma differentiation-associated gene 5 (MDA5). FMDV nonstructural protein 3A interacted with G3BP1 to inhibit G3BP1 expression and G3BP1-mediated RLH signaling by upregulating the expression of autophagy-related protein LRRC25. In addition, 3A proteins of other picornaviruses, including Seneca Valley virus (SVV) 3A, enterovirus 71 (EV71) 3A, and encephalomyocarditis virus (EMCV) 3A, also showed similar actions. Taking the data together, we elucidated, for the first time, a novel mechanism by which FMDV has evolved to inhibit IFN signaling and counteract host innate antiviral responses by autophagy. IMPORTANCE We show that foot-and-mouth disease virus (FMDV) 3A inhibits retinoic acid-inducible gene I (RIG-I)-like helicase signaling by degrading G3BP1 protein. Furthermore, FMDV 3A reduces G3BP1 by upregulating the expression of autophagy-related protein LRRC25. Additionally, other picornavirus 3A proteins, such as Seneca Valley virus (SVV) 3A, enterovirus 71 (EV71) 3A, and encephalomyocarditis virus (EMCV) 3A, also degrade G3BP1 by upregulating LRRC25 expression. This study will help us improve the design of current vaccines and aid the development of novel control strategies to combat FMD.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document