scholarly journals The C Proteins of Human Parainfluenza Virus Type 1 (HPIV1) Control the Transcription of a Broad Array of Cellular Genes That Would Otherwise Respond to HPIV1 Infection

2008 ◽  
Vol 83 (4) ◽  
pp. 1892-1910 ◽  
Author(s):  
Jim B. Boonyaratanakornkit ◽  
Emmalene J. Bartlett ◽  
Emerito Amaro-Carambot ◽  
Peter L. Collins ◽  
Brian R. Murphy ◽  
...  

ABSTRACTHuman parainfluenza virus type 1 (HPIV1) is an important respiratory pathogen in children and the most common cause of viral croup. We performed a microarray-based analysis of gene expression kinetics to examine how wild-type (wt) HPIV1 infection altered gene expression in human respiratory epithelial cells and what role beta interferon played in this response. We similarly evaluated HPIV1-P(C−), a highly attenuated and apoptosis-inducing virus that does not express any of the four C proteins, and HPIV1-CF170S, a less attenuated mutant that contains a single point mutation in C and, like wt HPIV1, does not efficiently induce apoptosis, to examine the role of the C proteins in controlling host gene expression. We also used these data to investigate whether the phenotypic differences between the two C mutants could be explained at the transcriptional level. Mutation or deletion of the C proteins of HPIV1 permitted the activation of over 2,000 cellular genes that otherwise would be repressed by HPIV1 infection. Thus, the C proteins profoundly suppress the response of human respiratory cells to HPIV1 infection. Cellular pathways targeted by the HPIV1 C proteins were identified and their transcriptional control was analyzed using bioinformatics. Transcription factor binding sites for IRF and NF-κB were overrepresented in some of the C protein-targeted pathways, but other pathways were dominated by less-known factors, such as forkhead transcription factor FOXD1. Surprisingly, the host responses to the P(C−) and CF170Smutants were very similar, and only subtle differences in the expression kinetics of caspase 3 and TRAIL receptor 2 were observed. Thus, changes in host cell transcription did not reflect the striking phenotypic differences observed between these two viruses.

2008 ◽  
Vol 82 (16) ◽  
pp. 8059-8070 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Margaret Hennessey ◽  
Mario H. Skiadopoulos ◽  
Alexander C. Schmidt ◽  
Peter L. Collins ◽  
...  

ABSTRACT Human parainfluenza virus type 1 (HPIV1) is a significant cause of pediatric respiratory disease in the upper and lower airways. An in vitro model of human ciliated airway epithelium (HAE), a useful tool for studying respiratory virus-host interactions, was used in this study to show that HPIV1 selectively infects ciliated cells within the HAE and that progeny virus is released from the apical surface with little apparent gross cytopathology. In HAE, type I interferon (IFN) is induced following infection with an HPIV1 mutant expressing defective C proteins with an F170S amino acid substitution, rHPIV1-CF170S, but not following infection with wild-type HPIV1. IFN induction coincided with a 100- to 1,000-fold reduction in virus titer, supporting the hypothesis that the HPIV1 C proteins are critical for the inhibition of the innate immune response. Two recently characterized live attenuated HPIV1 vaccine candidates expressing mutant C proteins were also evaluated in HAE. The vaccine candidates, rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710-11, which contain temperature-sensitive (ts) attenuating (att) and non-ts att mutations, were highly restricted in growth in HAE at permissive (32°C) and restrictive (37°C) temperatures. The viruses grew slightly better at 37°C than at 32°C, and rHPIV1-CR84G/Δ170HNT553ALY942A was less attenuated than rHPIV1-CR84G/Δ170HNT553ALΔ1710-11. The level of replication in HAE correlated with that previously observed for African green monkeys, suggesting that the HAE model has potential as a tool for the preclinical evaluation of HPIV1 vaccines, although how these in vitro data will correlate with vaccine virus replication in seronegative human subjects remains to be seen.


2008 ◽  
Vol 82 (18) ◽  
pp. 8965-8977 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Ann-Marie Cruz ◽  
Janice Esker ◽  
Adam Castaño ◽  
Henrick Schomacker ◽  
...  

ABSTRACT Recombinant human parainfluenza virus type 1 (rHPIV1) was modified to create rHPIV1-P(C−), a virus in which expression of the C proteins (C′, C, Y1, and Y2) was silenced without affecting the amino acid sequence of the P protein. Infectious rHPIV1-P(C−) was readily recovered from cDNA, indicating that the four C proteins were not essential for virus replication. Early during infection in vitro, rHPIV1-P(C−) replicated as efficiently as wild-type (wt) HPIV1, but its titer subsequently decreased coincident with the onset of an extensive cytopathic effect not observed with wt rHPIV1. rHPIV1-P(C−) infection, but not wt rHPIV1 infection, induced caspase 3 activation and nuclear fragmentation in LLC-MK2 cells, identifying the HPIV1 C proteins as inhibitors of apoptosis. In contrast to wt rHPIV1, rHPIV1-P(C−) and rHPIV1-CF170S, a mutant encoding an F170S substitution in C, induced interferon (IFN) and did not inhibit IFN signaling in vitro. However, only rHPIV1-P(C−) induced apoptosis. Thus, the anti-IFN and antiapoptosis activities of HPIV1 were separable: both activities are disabled in rHPIV1-P(C−), whereas only the anti-IFN activity is disabled in rHPIV1-CF170S. In African green monkeys (AGMs), rHPIV1-P(C−) was considerably more attenuated than rHPIV1-CF170S, suggesting that disabling the anti-IFN and antiapoptotic activities of HPIV1 had additive effects on attenuation in vivo. Although rHPIV1-P(C−) protected against challenge with wt HPIV1, its highly restricted replication in AGMs and in primary human airway epithelial cell cultures suggests that it might be overattenuated for use as a vaccine. Thus, the C proteins of HPIV1 are nonessential but have anti-IFN and antiapoptosis activities required for virulence in primates.


1991 ◽  
Vol 65 (6) ◽  
pp. 3406-3410 ◽  
Author(s):  
Y Matsuoka ◽  
J Curran ◽  
T Pelet ◽  
D Kolakofsky ◽  
R Ray ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e28382 ◽  
Author(s):  
Henrick Schomacker ◽  
Rebecca M. Hebner ◽  
Jim Boonyaratanakornkit ◽  
Sonja Surman ◽  
Emerito Amaro-Carambot ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009908
Author(s):  
Yuki Kurebayashi ◽  
Shringkhala Bajimaya ◽  
Masahiro Watanabe ◽  
Nicholas Lim ◽  
Michael Lutz ◽  
...  

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


2016 ◽  
Vol 65 (8) ◽  
pp. 793-803 ◽  
Author(s):  
Tanja Košutić-Gulija ◽  
Anamarija Slovic ◽  
Sunčanica Ljubin-Sternak ◽  
Gordana Mlinarić-Galinović ◽  
Dubravko Forčić

Vaccine ◽  
2010 ◽  
Vol 28 (3) ◽  
pp. 767-779 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Ann-Marie Cruz ◽  
Jim Boonyaratanakornkit ◽  
Janice Esker ◽  
Adam Castaño ◽  
...  

2007 ◽  
Vol 4 (1) ◽  
pp. 67 ◽  
Author(s):  
Emmalene J Bartlett ◽  
Adam Castaño ◽  
Sonja R Surman ◽  
Peter L Collins ◽  
Mario H Skiadopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document