attenuated virus
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Marzieh Rezaei ◽  
Mahboobeh Nazari

At present, effective vaccines have been developed as the most successful approaches for preventing widespread infectious disease. The global efforts are focusing with the aim of eliminating and overcoming the Coronavirus Disease 2019 (COVID-19) and are developing vaccines from the date it was announced as a pandemic disease. In this study, PubMed, Embase, Cochrane Library, Clinicaltrial.gov, WHO reports, Science Direct, Scopus, Google Scholar, and Springer databases were searched for finding the relevant studies about the COVID-19 vaccines. This article provides an overview of multiple vaccines that have been manufactured from December 2020 up to April 2021 and also offers a perspective on their efficacy, safety, advantages, and limitations. Currently, there are several categories of COVID-19 vaccines based on Protein Subunit (PS), Inactivated Virus (IV), Virus Like Particle (VLP), Live Attenuated Virus (LAV), Viral Vector (replicating) (VVr) and Viral Vector (non-replicating) (VVnr) in progress or finalized as indicated by the WHO reporting of April 1, 2020.


2021 ◽  
Vol 7 (49) ◽  
Author(s):  
Jakob Trimpert ◽  
Julia M. Adler ◽  
Kathrin Eschke ◽  
Azza Abdelgawad ◽  
Theresa C. Firsching ◽  
...  

Author(s):  
I.A. Puntus ◽  
◽  
V.A. Babak ◽  

The paper discusses the topic of the spread of a highly contagious transboundary emergent viral disease of cattle, nodular dermatitis; describes its etiology, epizootological data, pathogenesis, clinical signs and pathological changes, features of the course, diagnosis, differential diagnosis and treatment; the high growth rate of countries where the disease is registered is noted. The Republic of Kazakhstan is among them. The authors paid special attention to the significant economic damage caused by lumpy skin disease, as well as to the effectiveness of various schemes and methods of combating the disease, including stamping out, and in particular to specific prevention using two types of vaccines: heterologous virus vaccines, containing strains of sheeppox virus, and live attenuated virus vaccines from the Neethling strain.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hsu-Hung Tseng ◽  
Wei-Ru Huang ◽  
Ching-Yuan Cheng ◽  
Hung-Chuan Chiu ◽  
Tsai-Ling Liao ◽  
...  

Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Grzegorz B. Gmyrek ◽  
Adrian Filiberti ◽  
Micaela Montgomery ◽  
Alisha Chitrakar ◽  
Derek J. Royer ◽  
...  

ABSTRACT The contribution of T cell and antibody responses following vaccination in resistance to herpes simplex virus 1 (HSV-1) infection continues to be rigorously investigated. In the present article, we explore the contribution of CD8+ T cells specific for the major antigenic epitope for HSV-1 glycoprotein B (gB498–505, gB) in C57BL/6 mice using a transgenic mouse (gBT-I.1) model vaccinated with HSV-1 0ΔNLS. gBT-I.1-vaccinated mice did not generate a robust neutralization antibody titer in comparison to the HSV-1 0ΔNLS-vaccinated wild-type C57BL/6 counterpart. Nevertheless, the vaccinated gBT-I.1 mice were resistant to ocular challenge with HSV-1 compared to vehicle-vaccinated animals based on survival and reduced corneal neovascularization but displayed similar levels of corneal opacity. Whereas there was no difference in the virus titer recovered from the cornea comparing vaccinated mice, HSV-1 0ΔNLS-vaccinated animals possessed significantly less infectious virus during acute infection in the trigeminal ganglia (TG) and brain stem compared to the control-vaccinated group. These results correlated with a significant increase in gB-elicited interferon-γ (IFN-γ), granzyme B, and CD107a and a reduction in lymphocyte activation gene 3 (LAG-3), programmed cell death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expressed by TG infiltrating gB-specific CD8+ T cells from the HSV-1 0ΔNLS-vaccinated group. Antibody depletion of CD8+ T cells in HSV-1 0ΔNLS-vaccinated mice rendered animals highly susceptible to virus-mediated mortality similar to control-vaccinated mice. Collectively, the HSV-1 0ΔNLS vaccine is effective against ocular HSV-1 challenge, reducing ocular neovascularization and suppressing peripheral nerve virus replication in the near absence of neutralizing antibody in this unique mouse model. IMPORTANCE The role of CD8+ T cells in antiviral efficacy using a live-attenuated virus as the vaccine is complicated by the humoral immune response. In the case of the herpes simplex virus 1 (HSV-1) 0ΔNLS vaccine, the correlate of protection has been defined to be primarily antibody driven. The current study shows that in the near absence of anti-HSV-1 antibody, vaccinated mice are protected from subsequent challenge with wild-type HSV-1 as measured by survival. The efficacy is lost following depletion of CD8+ T cells. Whereas increased survival and reduction in virus replication were observed in vaccinated mice challenged with HSV-1, cornea pathology was mixed with a reduction in neovascularization but no change in opacity. Collectively, the study suggests CD8+ T cells significantly contribute to the host adaptive immune response to HSV-1 challenge following vaccination with an attenuated virus, but multiple factors are involved in cornea pathology in response to ocular virus challenge.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jacob Kames ◽  
David D. Holcomb ◽  
Ofer Kimchi ◽  
Michael DiCuccio ◽  
Nobuko Hamasaki-Katagiri ◽  
...  

Abstract As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses, for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.


2020 ◽  
Vol 5 (5) ◽  
pp. 889-896 ◽  
Author(s):  
Jeffrey A SoRelle ◽  
Ithiel Frame ◽  
Alejandra Falcon ◽  
Jerin Jacob ◽  
Jennifer Wagenfuehr ◽  
...  

Abstract Background Detection of SARS-CoV-2 viral RNA is important for the diagnosis and management of COVID-19. Methods We present a clinical validation of a reverse transcription PCR (RT-PCR) assay for the SARS-CoV-2 nucleocapsid (N1) gene. Off-board lysis on an automated nucleic acid extraction system was optimized with endemic coronaviruses (OC43 and NL63). Genomic RNA and SARS-CoV-2 RNA in a recombinant viral protein coat were used as control materials and compared for recovery from nucleic acid extraction. Results Nucleic acid extraction showed decreased recovery of endemic Coronavirus in vitro transcribed RNA (NL63) compared with attenuated virus (OC43). SARS-CoV-2 RNA had more reliable recovery from extraction through amplification than genomic RNA. Recovery of genomic RNA was improved by combining lysis buffer with clinical matrix before adding RNA. The RT-PCR assay demonstrated 100% in silico sensitivity and specificity. The accuracy across samples was 100% (75 of 75). Precision studies showed 100% intra-run, inter-run, and inter-technologist concordance. The limit of detection was 264 copies per milliliter (estimated 5 copies per reaction; 35.56 mean threshold cycle value). Conclusions This SARS-CoV-2 assay demonstrates appropriate characteristics for use under an Emergency Use Authorization. Endemic coronavirus controls were useful in optimizing the extraction procedure. In the absence of live or attenuated virus, recombinant virus in a protein coat is an appropriate control specimen type for assay validation during a pandemic.


Author(s):  
Jacob Kames ◽  
David D. Holcomb ◽  
Ofer Kimchi ◽  
Michael DiCuccio ◽  
Nobuko Hamasaki-Katagiri ◽  
...  

AbstractAs the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.


Sign in / Sign up

Export Citation Format

Share Document