scholarly journals Targeted Disruption of Kaposi's Sarcoma-Associated Herpesvirus ORF57 in the Viral Genome Is Detrimental for the Expression of ORF59, K8α, and K8.1 and the Production of Infectious Virus

2006 ◽  
Vol 81 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Vladimir Majerciak ◽  
Natalia Pripuzova ◽  
J. Philip McCoy ◽  
Shou-Jiang Gao ◽  
Zhi-Ming Zheng

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 regulates viral gene expression at the posttranscriptional level during viral lytic infection. To study its function in the context of the viral genome, we disrupted KSHV ORF57 in the KSHV genome by transposon-based mutagenesis. The insertion of the transposon into the ORF57 exon 2 region also interrupted the 3′ untranslated region of KSHV ORF56, which overlaps with the ORF57 coding region. The disrupted viral genome, Bac36-Δ57, did not express ORF57, ORF59, K8α, K8.1, or a higher level of polyadenylated nuclear RNA after butyrate induction and could not be induced to produce infectious viruses in the presence of valproic acid, a histone deacetylase inhibitor and a novel KSHV lytic cycle inducer. The ectopic expression of ORF57 partially complemented the replication deficiency of the disrupted KSHV genome and the expression of the lytic gene ORF59. The induced production of infectious virus particles from the disrupted KSHV genome was also substantially restored by the simultaneous expression of both ORF57 and ORF56; complementation by ORF57 alone only partially restored the production of virus, and expression of ORF56 alone showed no effect. Altogether, our data indicate that in the context of the viral genome, KSHV ORF57 is essential for ORF59, K8α, and K8.1 expression and infectious virus production.

2015 ◽  
Vol 90 (4) ◽  
pp. 1741-1756 ◽  
Author(s):  
Jian-jun Wu ◽  
Denis Avey ◽  
Wenwei Li ◽  
Joseph Gillen ◽  
Bishi Fu ◽  
...  

ABSTRACTWe recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol89:4918–4931, 2015,http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress.IMPORTANCEHerpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.


2009 ◽  
Vol 83 (9) ◽  
pp. 4695-4699 ◽  
Author(s):  
Richard Wells ◽  
Laurence Stensland ◽  
Jeffrey Vieira

ABSTRACT Human cytomegalovirus (HCMV) infection of a cell containing latent Kaposi's sarcoma-associated herpesvirus (KSHV) results in the activation of KSHV lytic replication and the production of infectious virus. In this study, we examined the HCMV genes identified as having a role in the activation of HCMV early genes for their ability to activate KSHV lytic replication. It was found that the UL112-113 locus was able to activate the complete KSHV lytic cycle, while the UL122-123 locus, encoding the IE1 and IE2 proteins, known to be strong transactivators, did not.


2008 ◽  
Vol 82 (9) ◽  
pp. 4562-4572 ◽  
Author(s):  
R. Santarelli ◽  
A. Farina ◽  
M. Granato ◽  
R. Gonnella ◽  
S. Raffa ◽  
...  

ABSTRACT We report the identification and characterization of p33, the product of Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 69 (ORF69), a positional homolog of the conserved herpesvirus protein UL31. p33 is expressed upon induction of viral lytic cycle with early kinetics. Immunofluorescence analysis revealed that in infected cell lines, the protein is localized in the nucleus, both in dotted spots and along the nuclear membrane. Nuclear fractionation experiments showed that p33 partitions with the nuclear matrix, and both immunoblotting of purified virions and immunoelectron microscopy indicated that the novel protein is not a component of the mature virus. Following ectopic expression in KSHV-negative cells, the protein was never associated with the nuclear membrane, suggesting that p33 needs to interact with additional viral proteins to reach the nuclear rim. In fact, after cotransfection with the ORF67 gene, the KSHV positional homolog of UL34, the p33 intranuclear signal changed and the two proteins colocalized on the nuclear membrane. A similar result was obtained when ORF69 was cotransfected with BFRF1, the Epstein-Barr virus (EBV) positional homolog of UL34 and ORF67. Finally, upon cotransfection, ORF69 significantly increased nuclear membrane reduplications induced by BFRF1. The above results indicate that KSHV p33 shares many similarities with its EBV homolog BFLF2 and suggest that functional cross-complementation is possible between members of the gammaherpesvirus subfamily.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 952
Author(s):  
Endrit Elbasani ◽  
Francesca Falasco ◽  
Silvia Gramolelli ◽  
Veijo Nurminen ◽  
Thomas Günther ◽  
...  

CRISPR activation (CRISPRa) has revealed great potential as a tool to modulate the expression of targeted cellular genes. Here, we successfully applied the CRISPRa system to trigger the Kaposi’s sarcoma-associated herpesvirus (KSHV) reactivation in latently infected cells by selectively activating ORF50 gene directly from the virus genome. We found that a nuclease-deficient Cas9 (dCas9) fused to a destabilization domain (DD) and 12 copies of the VP16 activation domain (VP192) triggered a more efficient KSHV lytic cycle and virus production when guided to two different sites on the ORF50 promoter, instead of only a single site. To our surprise, the virus reactivation induced by binding of the stable DD-dCas9-VP192 on the ORF50 promoter was even more efficient than reactivation induced by ectopic expression of ORF50. This suggests that recruitment of additional transcriptional activators to the ORF50 promoter, in addition to ORF50 itself, are needed for the efficient virus production. Further, we show that CRISPRa can be applied to selectively express the early lytic gene, ORF57, without disturbing the viral latency. Therefore, CRISPRa-based systems can be utilized to facilitate virus–host interaction studies by controlling the expression of not only cellular but also of specific KSHV genes.


2002 ◽  
Vol 76 (23) ◽  
pp. 12185-12199 ◽  
Author(s):  
Bok-Soo Lee ◽  
Mini Paulose-Murphy ◽  
Young-Hwa Chung ◽  
Michelle Connlole ◽  
Steven Zeichner ◽  
...  

ABSTRACT The K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic region and elicits cellular signal transduction through this motif. To investigate the role of K1 signal transduction in KSHV replication, we expressed full-length K1 and CD8-K1 chimeras in BCBL1 cells. Unlike its strong signaling activity in uninfected B lymphocytes, K1 did not induce intracellular calcium mobilization or NF-AT activation at detectable levels in KSHV-infected BCBL1 cells. Instead, K1 signaling dramatically suppressed KSHV lytic reactivation induced by tetradecanoyl phorbol acetate (TPA) stimulation, but not by ORF50 ectopic expression. Mutational analysis showed that the cytoplasmic ITAM sequence of K1 was required for this suppression. Viral microarray and immunoblot analyses demonstrated that K1 signaling suppressed the TPA-mediated increase in the expression of a large subset of viral lytic genes in KSHV-infected BCBL1 cells. Furthermore, electrophoretic mobility shift assays demonstrated that TPA-induced activation of AP-1, NF-κB, and Oct-1 activities was severely diminished in BCBL1 cells expressing the K1 cytoplasmic domain. The reduced activities of these transcription factors may confer the observed reduction in viral lytic gene expression. These results demonstrate that K1-mediated signal transduction in KSHV-infected cells is profoundly different from that in KSHV-negative cells. Furthermore, K1 signal transduction efficiently suppresses TPA-mediated viral reactivation in an ITAM-dependent manner, and this suppression may contribute to the establishment and/or maintenance of KSHV latency in vivo.


2001 ◽  
Vol 75 (3) ◽  
pp. 1378-1386 ◽  
Author(s):  
Jeffrey Vieira ◽  
Patricia O'Hearn ◽  
Louise Kimball ◽  
Bala Chandran ◽  
Lawrence Corey

ABSTRACT The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) andneo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.


2005 ◽  
Vol 79 (5) ◽  
pp. 3217-3222 ◽  
Author(s):  
Tammy M. Rickabaugh ◽  
Helen J. Brown ◽  
Ting-Ting Wu ◽  
Moon Jung Song ◽  
Seungmin Hwang ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain.


2006 ◽  
Vol 80 (6) ◽  
pp. 3062-3070 ◽  
Author(s):  
Carlos M. González ◽  
Emily L. Wong ◽  
Brian S. Bowser ◽  
Gregory K. Hong ◽  
Shannon Kenney ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Kaposi's sarcoma is the most common neoplasm among human immunodeficiency virus-positive individuals. Like other herpesviruses, KSHV is able to establish a predominantly latent, life-long infection in its host. The KSHV lytic cycle can be triggered by a number of stimuli that induce the expression of the key lytic switch protein, the replication and transcription activator (RTA) encoded by Orf50. The expression of Rta is necessary and sufficient to trigger the full lytic program resulting in the ordered expression of viral proteins, release of viral progeny, and host cell death. We have characterized an unknown open reading frame, Orf49, which lies adjacent and in the opposite orientation to Orf50. Orf49 is expressed during the KSHV lytic cycle and shows early transcription kinetics. We have mapped the 5′ and 3′ ends of the unspliced Orf49 transcript, which encodes a 30-kDa protein that is localized to both the nucleus and the cytoplasm. Interestingly, we found that Orf49 was able to cooperate with Rta to activate several KSHV lytic promoters containing AP-1 sites. The Orf49-encoded protein was also able to induce transcriptional activation through c-Jun but not the ATF1, ATF2, or CREB transcription factor. We found that Orf49 could induce phosphorylation and activation of the transcription factor c-Jun, the Jun N-terminal kinase (JNK), and p38. Our data suggest that Orf49 functions to activate the JNK and p38 pathways during the KSHV lytic cycle.


Sign in / Sign up

Export Citation Format

Share Document