scholarly journals Role of Interferon Regulatory Factor 3-Mediated Apoptosis in the Establishment and Maintenance of Persistent Infection by Sendai Virus

2012 ◽  
Vol 87 (1) ◽  
pp. 16-24 ◽  
Author(s):  
S. Chattopadhyay ◽  
V. Fensterl ◽  
Y. Zhang ◽  
M. Veleeparambil ◽  
M. Yamashita ◽  
...  
2006 ◽  
Vol 17 (3) ◽  
pp. 1461-1471 ◽  
Author(s):  
Kai Yang ◽  
Hexin Shi ◽  
Rong Qi ◽  
Shaogang Sun ◽  
Yujie Tang ◽  
...  

Interferon regulatory factor 3 (IRF3) plays a crucial role in mediating cellular responses to virus intrusion. The protein kinase TBK1 is a key regulator inducing phosphorylation of IRF3. The regulatory mechanisms during IRF3 activation remain poorly characterized. In the present study, we have identified by yeast two-hybrid approach a specific interaction between IRF3 and chaperone heat-shock protein of 90 kDa (Hsp90). The C-terminal truncation mutant of Hsp90 is a strong dominant-negative inhibitor of IRF3 activation. Knockdown of endogenous Hsp90 by RNA interference attenuates IRF3 activation and its target gene expressions. Alternatively, Hsp90-specific inhibitor geldanamycin (GA) dramatically reduces expression of IRF3-regulated interferon-stimulated genes and abolishes the cytoplasm-to-nucleus translocation and DNA binding activity of IRF3 in Sendai virus-infected cells. Significantly, virus-induced IRF3 phosphorylation is blocked by GA, whereas GA does not affect the protein level of IRF3. In addition, TBK1 is found to be a client protein of Hsp90 in vivo. Treatment of 293 cells with GA interferes with the interaction of TBK1 and Hsp90, resulting in TBK1 destabilization and its subsequent proteasome-mediated degradation. Besides maintaining stability of TBK1, Hsp90 also forms a novel complex with TBK1 and IRF3, which brings TBK1 and IRF3 dynamically into proximity and facilitates signal transduction from TBK1 to IRF3. Our study uncovers an essential role of Hsp90 in the virus-induced activation of IRF3.


2010 ◽  
Vol 30 (10) ◽  
pp. 2424-2436 ◽  
Author(s):  
He-Xin Shi ◽  
Kai Yang ◽  
Xing Liu ◽  
Xin-Yi Liu ◽  
Bo Wei ◽  
...  

ABSTRACT Virus infection induces host antiviral responses, including induction of type I interferons. Transcription factor interferon regulatory factor 3 (IRF3) plays a pivotal role and is tightly regulated in this process. Here, we identify HERC5 (HECT domain and RLD 5) as a specific binding protein of IRF3 by immunoprecipitation. Ectopic expression or knockdown of HERC5 could, respectively, enhance or impair IRF3-mediated gene expression. Mechanistically, HERC5 catalyzes the conjugation of ubiquitin-like protein ISG15 onto IRF3 (Lys193, -360, and -366), thus attenuating the interaction between Pin1 and IRF3, resulting in sustained IRF3 activation. In contrast to results for wild-type IRF3, the mutant IRF3(K193,360,366R) interacts tightly with Pin1, is highly polyubiquitinated, and becomes less stable upon Sendai virus (SeV) infection. Consistently, host antiviral responses are obviously boosted or crippled in the presence or absence of HERC5, respectively. Collectively, this study characterizes HERC5 as a positive regulator of innate antiviral responses. It sustains IRF3 activation via a novel posttranslational modification, ISGylation.


2008 ◽  
Vol 83 (2) ◽  
pp. 817-829 ◽  
Author(s):  
Nicolas Ruggli ◽  
Artur Summerfield ◽  
Ana R. Fiebach ◽  
Laurence Guzylack-Piriou ◽  
Oliver Bauhofer ◽  
...  

ABSTRACT Pestiviruses prevent alpha/beta interferon (IFN-α/β) production by promoting proteasomal degradation of interferon regulatory factor 3 (IRF3) by means of the viral Npro nonstructural protein. Npro is also an autoprotease, and its amino-terminal coding sequence is involved in translation initiation. We previously showed with classical swine fever virus (CSFV) that deletion of the entire Npro gene resulted in attenuation in pigs. In order to elaborate on the role of the Npro-mediated IRF3 degradation in classical swine fever pathogenesis, we searched for minimal amino acid substitutions in Npro that would specifically abrogate this function. Our mutational analyses showed that degradation of IRF3 and autoprotease activity are two independent but structurally overlapping functions of Npro. We describe two mutations in Npro that eliminate Npro-mediated IRF3 degradation without affecting the autoprotease activity. We also show that the conserved standard sequence at these particular positions is essential for Npro to interact with IRF3. Surprisingly, when these two mutations are introduced independently in the backbones of highly and moderately virulent CSFV, the resulting viruses are not attenuated, or are only partially attenuated, in 8- to 10-week-old pigs. This contrasts with the fact that these mutant viruses have lost the capacity to degrade IRF3 and to prevent IFN-α/β induction in porcine cell lines and monocyte-derived dendritic cells. Taken together, these results demonstrate that contrary to previous assumptions and to the case for other viral systems, impairment of IRF3-dependent IFN-α/β induction is not a prerequisite for CSFV virulence.


2012 ◽  
Vol 86 (9) ◽  
pp. 4947-4955 ◽  
Author(s):  
D. Ishibashi ◽  
R. Atarashi ◽  
T. Fuse ◽  
T. Nakagaki ◽  
N. Yamaguchi ◽  
...  

2005 ◽  
Vol 280 (18) ◽  
pp. 18355-18360 ◽  
Author(s):  
Yoko Obata ◽  
Kazuo Yamamoto ◽  
Masanobu Miyazaki ◽  
Kunitada Shimotohno ◽  
Shigeru Kohno ◽  
...  

1999 ◽  
Vol 19 (4) ◽  
pp. 2465-2474 ◽  
Author(s):  
Rongtuan Lin ◽  
Yael Mamane ◽  
John Hiscott

ABSTRACT The interferon regulatory factor 3 (IRF-3) gene encodes a 55-kDa protein which is expressed constitutively in all tissues. In unstimulated cells, IRF-3 is present in an inactive cytoplasmic form; following Sendai virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues located in the carboxy terminus. Virus-induced phosphorylation of IRF-3 leads to cytoplasmic to nuclear translocation of phosphorylated IRF-3, association with the transcriptional coactivator CBP/p300, and stimulation of DNA binding and transcriptional activities of virus-inducible genes. Using yeast and mammalian one-hybrid analysis, we now demonstrate that an extended, atypical transactivation domain is located in the C terminus of IRF-3 between amino acids (aa) 134 and 394. We also show that the C-terminal domain of IRF-3 located between aa 380 and 427 participates in the autoinhibition of IRF-3 activity via an intramolecular association with the N-terminal region between aa 98 and 240. After Sendai virus infection, an intermolecular association between IRF-3 proteins is detected, demonstrating a virus-dependent formation of IRF-3 homodimers; this interaction is also observed in the absence of virus infection with a constitutively activated form of IRF-3. Substitution of the C-terminal Ser-Thr phosphorylation sites with the phosphomimetic Asp in the region ISNSHPLSLTSDQ between amino acids 395 and 407 [IRF-3(5D)], but not the adjacent S385 and S386 residues, generates a constitutively activated DNA binding form of IRF-3. In contrast, substitution of S385 and S386 with either Ala or Asp inhibits both DNA binding and transactivation activities of the IRF-3(5D) protein. These studies thus define the transactivation domain of IRF-3, two domains that participate in the autoinhibition of IRF-3 activity, and the regulatory phosphorylation sites controlling IRF-3 dimer formation, DNA binding activity, and association with the CBP/p300 coactivator.


2005 ◽  
Vol 79 (7) ◽  
pp. 3920-3929 ◽  
Author(s):  
Christopher P. Elco ◽  
Jeanna M. Guenther ◽  
Bryan R. G. Williams ◽  
Ganes C. Sen

ABSTRACT Sendai virus (SeV) infection causes the transcriptional induction of many cellular genes that are also induced by interferon (IFN) or double-stranded RNA (dsRNA). We took advantage of various mutant cell lines to investigate the putative roles of the components of the IFN and dsRNA signaling pathways in the induction of those genes by SeV. Profiling the patterns of gene expression in SeV-infected cells demonstrated that Toll-like receptor 3, although essential for gene induction by dsRNA, was dispensable for gene induction by SeV. In contrast, Jak1, which mediates IFN signaling, was required for the induction of a small subset of genes by SeV. NF-κB and interferon regulatory factor 3 (IRF-3), the two major transcription factors activated by virus infection, were essential for the induction of two sets of genes by SeV. As expected, some of the IRF-3-dependent genes, such as ISG56, were more strongly induced by SeV in IRF-3-overexpressing cells. Surprisingly, in those cells, a number of NF-κB-dependent genes, such as the A20 gene, were induced poorly. Using a series of cell lines expressing increasing levels of IRF-3, we demonstrated that the degree of induction of A20 mRNA, upon SeV infection, was inversely proportional to the cellular level of IRF-3, whereas that of ISG56 mRNA was directly proportional. Thus, IRF-3 can suppress the expression of NF-κB-dependent genes in SeV-infected cells.


Sign in / Sign up

Export Citation Format

Share Document