scholarly journals Proteolytic Cleavage of VP1-2 Is Required for Release of Herpes Simplex Virus 1 DNA into the Nucleus

2008 ◽  
Vol 82 (7) ◽  
pp. 3311-3319 ◽  
Author(s):  
Vladimir Jovasevic ◽  
Li Liang ◽  
Bernard Roizman

ABSTRACT In this report we propose a model in which after the herpes simplex virus (HSV) capsid docks at the nuclear pore, the tegument protein attached to the capsid must be cleaved by a serine or a cysteine protease in order for the DNA to be released into the nucleus. In support of the model are the following results. (i) Exposure of cells at the time of or before infection to l-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK), a serine-cysteine protease inhibitor, prevents the release of viral DNA or expression of viral genes. TPCK does not block viral gene expression after entry of viral DNA into the nucleus. (ii) The tegument protein VP1-2, the product of the UL36 gene, is cleaved shortly after the entry of the HSV 1 (HSV-1) virion into the cell. (iii) The proteolytic cleavage of VP1-2 does not occur in cells that are infected with HSV-1 under conditions that prevent the release of the viral DNA into the nucleus. (iv) The proteolytic cleavage of VP1-2 occurs only after the capsid is attached to the nuclear pore. Thus, TPCK prevented the release of HSV-1 DNA into the nucleus when added to medium 1 hour after infection with tsB7 at 39.5°C followed by a shift down to the permissive temperature. The ts lesion maps in the UL36 gene. At the nonpermissive temperature, the capsids accumulate at the nuclear pore but the DNA is not released into the nucleus.

2008 ◽  
Vol 83 (4) ◽  
pp. 1660-1668 ◽  
Author(s):  
Anna Maria Copeland ◽  
William W. Newcomb ◽  
Jay C. Brown

ABSTRACT Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Jamie B. Huffman ◽  
Gina R. Daniel ◽  
Erik Falck-Pedersen ◽  
Alexis Huet ◽  
Greg A. Smith ◽  
...  

ABSTRACT The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus. A key knowledge gap is how the capsid engages the NPC and what triggers release of the viral genome into the nucleus. Here we show that the C-terminal region of the HSV-1 pUL25 protein is required for releasing the viral genome from capsids docked at nuclear pores. The significance of our research is in identifying pUL25 as a key viral factor for genome uncoating. pUL25 is found at each of the capsid vertices as part of the capsid vertex-specific component and implicates the importance of this complex for NPC binding and genome release.


2009 ◽  
Vol 90 (10) ◽  
pp. 2353-2363 ◽  
Author(s):  
F. Abaitua ◽  
R. N. Souto ◽  
H. Browne ◽  
T. Daikoku ◽  
P. O'Hare

VP1-2, encoded by the UL36 gene of herpes simplex virus (HSV), is a large structural protein, conserved across the family Herpesviridae, that is assembled into the tegument and is essential for virus replication. Current evidence indicates that VP1-2 is a central component in the tegumentation and envelopment processes and that it also possesses important roles in capsid transport and entry. However, any detailed mechanistic understanding of VP1-2 function(s) remains limited. This study characterized the replication of HSV-1 tsB7, a temperature-sensitive mutant restricted at the non-permissive temperature due to a defect in VP1-2 function. A tsB7 virus expressing green fluorescent protein-fused VP16 protein was used to track the accumulation and location of a major tegument protein. After infection at the permissive temperature and shift to the non-permissive temperature, the production of infectious virus ceased. VP1-2 accumulated in altered cytosolic clusters, together with VP16 and other virion proteins. Furthermore, correlating with the results of immunofluorescence, electron microscopy demonstrated abnormal cytosolic capsid clustering and a block in envelopment. As VP1-2 encompasses a ubiquitin-specific protease domain, the occurrence of ubiquitin-conjugated proteins during tsB7 infection was also examined at the non-permissive temperature. A striking overaccumulation was observed of ubiquitin-specific conjugates in cytoplasmic clusters, overlapping and adjacent to the VP1-2 clusters. These results are discussed in relation to the possible functions of VP1-2 in the assembly pathway and the nature of the defect in tsB7.


2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


1985 ◽  
Vol 5 (3) ◽  
pp. 518-528
Author(s):  
S Silver ◽  
B Roizman

True gamma or gamma 2 genes, unlike alpha, beta, and gamma 1 (beta gamma) genes of herpes simplex virus 1 (HSV-1), stringently require viral DNA synthesis for their expression. We report that gamma 2 genes resident in cells were induced in trans by infection with HSV-1 but that the induction did not require amplification of either the resident gene or the infecting viral genome. Specifically, to test the hypothesis that expression of these genes is amplification dependent, we constructed two sets of gamma 2-thymidine kinase (TK) chimeric genes. The first (pRB3038) consisted of the promoter-regulatory region and a portion of 5'-transcribed noncoding region of the domain of a gamma 2 gene identified by Hall et al. (J. Virol. 43:594-607) in the HSV-1(F) BamHI fragment D' to the 5'-transcribed noncoding and coding regions of the TK gene. The second (pRB3048) contained, in addition, an origin of HSV-1 DNA replication. Cells transfected with either the first or second construct and selected for the TK+ phenotype were then tested for TK induction after superinfection with HSV-1(F) delta 305, containing a deletion in the coding sequences of the TK gene, and viruses containing, in addition, a ts lesion in the alpha 4 regulatory protein (ts502 delta 305) or in the beta 8 major DNA-binding protein (tsHA1 delta 305). The results were as follows: induction by infection with TK- virus of chimeric TK genes with or without an origin of DNA replication was dependent on functional alpha 4 protein but not on viral DNA synthesis; the resident chimeric gene in cells selected for G418 (neomycin) resistance was regulated in the same fashion; the chimeric gene recombined into the viral DNA was regulated as a gamma 2 gene in that its expression in infected cells was dependent on viral DNA synthesis; the gamma 2-chimeric genes resident in the host and in viral genomes were transcribed from the donor BamHI fragment D' containing the promoter-regulatory domain of the gamma 2 gene. The significance of the differential regulation of gamma 2 genes in the environments of host and viral genomes by viral trans-acting factors is discussed.


2000 ◽  
Vol 74 (16) ◽  
pp. 7362-7374 ◽  
Author(s):  
Scott M. Bunnell ◽  
Stephen A. Rice

ABSTRACT ICP27 is an essential herpes simplex virus type 1 (HSV-1) immediate-early protein that regulates viral gene expression by poorly characterized mechanisms. Previous data suggest that its carboxyl (C)-terminal portion is absolutely required for productive viral infection. In this study, we isolated M16R, a second-site revertant of a viral ICP27 C-terminal mutant. M16R harbors an intragenic reversion, as demonstrated by the fact that its cloned ICP27 allele can complement the growth of an HSV-1 ICP27 deletion mutant. DNA sequencing demonstrated that the intragenic reversion is a frameshift alteration in a homopolymeric run of C residues at codons 215 to 217. This results in the predicted expression of a truncated, 289-residue molecule bearing 72 novel C-terminal residues derived from the +1 reading frame. Consistent with this, M16R expresses an ICP27-related molecule of the predicted size in the nuclei of infected cells. Transfection-based viral complementation assays confirmed that the truncated, frameshifted protein can partially substitute for ICP27 in the context of viral infection. Surprisingly, its novel C-terminal residues are required for this activity. To see if the frameshift mutation is all that is required for M16R's viability, we re-engineered the M16R ICP27 allele and inserted it into a new viral background, creating the HSV-1 mutant M16exC. An additional mutant, exCd305, was constructed which possesses the frameshift in the context of an ICP27 gene with the C terminus deleted. We found that both M16exC and exCd305 are nonviable in Vero cells, suggesting that one or more extragenic mutations are also required for the viability of M16R. Consistent with this interpretation, we isolated two viable derivatives ofexCd305 which grow productively in Vero cells despite being incapable of encoding the C-terminal portion of ICP27. Studies of viral DNA synthesis in mutant-infected cells indicated that the truncated, frameshifted ICP27 protein can enhance viral DNA replication. In summary, our results demonstrate that the C-terminal portion of ICP27, conserved widely in herpesviruses and previously believed to be absolutely essential, is dispensable for HSV-1 lytic replication in the presence of compensatory genomic mutations.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites. IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.


1985 ◽  
Vol 5 (3) ◽  
pp. 518-528 ◽  
Author(s):  
S Silver ◽  
B Roizman

True gamma or gamma 2 genes, unlike alpha, beta, and gamma 1 (beta gamma) genes of herpes simplex virus 1 (HSV-1), stringently require viral DNA synthesis for their expression. We report that gamma 2 genes resident in cells were induced in trans by infection with HSV-1 but that the induction did not require amplification of either the resident gene or the infecting viral genome. Specifically, to test the hypothesis that expression of these genes is amplification dependent, we constructed two sets of gamma 2-thymidine kinase (TK) chimeric genes. The first (pRB3038) consisted of the promoter-regulatory region and a portion of 5'-transcribed noncoding region of the domain of a gamma 2 gene identified by Hall et al. (J. Virol. 43:594-607) in the HSV-1(F) BamHI fragment D' to the 5'-transcribed noncoding and coding regions of the TK gene. The second (pRB3048) contained, in addition, an origin of HSV-1 DNA replication. Cells transfected with either the first or second construct and selected for the TK+ phenotype were then tested for TK induction after superinfection with HSV-1(F) delta 305, containing a deletion in the coding sequences of the TK gene, and viruses containing, in addition, a ts lesion in the alpha 4 regulatory protein (ts502 delta 305) or in the beta 8 major DNA-binding protein (tsHA1 delta 305). The results were as follows: induction by infection with TK- virus of chimeric TK genes with or without an origin of DNA replication was dependent on functional alpha 4 protein but not on viral DNA synthesis; the resident chimeric gene in cells selected for G418 (neomycin) resistance was regulated in the same fashion; the chimeric gene recombined into the viral DNA was regulated as a gamma 2 gene in that its expression in infected cells was dependent on viral DNA synthesis; the gamma 2-chimeric genes resident in the host and in viral genomes were transcribed from the donor BamHI fragment D' containing the promoter-regulatory domain of the gamma 2 gene. The significance of the differential regulation of gamma 2 genes in the environments of host and viral genomes by viral trans-acting factors is discussed.


2001 ◽  
Vol 75 (2) ◽  
pp. 1013-1030 ◽  
Author(s):  
Martine Aubert ◽  
Stephen A. Rice ◽  
John A. Blaho

ABSTRACT We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5,d1-2, M11, M15, M16, n504R,n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3,d3-4, d4-5, d5-6, andd6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells.


2003 ◽  
Vol 77 (10) ◽  
pp. 5821-5828 ◽  
Author(s):  
Qiyi Tang ◽  
Luge Li ◽  
Alexander M. Ishov ◽  
Valerie Revol ◽  
Alberto L. Epstein ◽  
...  

ABSTRACT DNA viruses such as herpes simplex virus type 1 (HSV-1) appear to start their replicative processes at specific nuclear domains known as ND10. In analyses to determine the minimum viral components needed for transcript accumulation at ND10, we find that a specific viral DNA sequence, OriS, and the viral immediate-early proteins ICP4 and ICP27 are sufficient for a reporter gene placed in cis to the OriS sequence to transcribe at ND10. A chromatin immunoprecipitation assay demonstrated expected critical intermediates in retaining the minimal genome at ND10 for the HSV-1 replication origin through direct or indirect binding to the host protein Daxx. Coimmunoprecipitation assays with antibodies to Daxx and ICP4, ICP27, and ICP8 showed that the respective proteins interact, possibly forming a complex. A potential complex between the origin, early viral DNA-binding protein ICP8 and Daxx did not result in transcription at ND10. Thus, the deposition of transcriptionally active HSV-1 genomes at ND10 is most likely a consequence of retention at ND10 through the interaction of viral genome-bound ICP4 and ICP27 with Daxx. Such a complex might be more likely immobilized at the outside of ND10 by the PML-interacting Daxx than at other nuclear sites.


Sign in / Sign up

Export Citation Format

Share Document