late genes
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 16)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
David W Morgens ◽  
Divya Nandakumar ◽  
Allison L Didychuk ◽  
Kevin J Yang ◽  
Britt Glaunsinger

While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel. Here, we used this approach to study the human oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV). We designed a sgRNA library containing all possible ~22,000 guides targeting the genome of KSHV - one cut site approximately every 8 base pairs - enabling the pooled screening of the entire genome. We used this tool to phenotype all possible Cas9-targeted viruses for transcription of KSHV late genes, which is required to produce structural components of the viral capsid. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we discovered a novel hit, ORF46 - and more specifically its DNA binding domain - is required for viral DNA replication. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.


Author(s):  
Jan P. Dumanski ◽  
Jonatan Halvardson ◽  
Hanna Davies ◽  
Edyta Rychlicka-Buniowska ◽  
Jonas Mattisson ◽  
...  

AbstractEpidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1403
Author(s):  
Rong Sun ◽  
Junping Han ◽  
Limin Zheng ◽  
Feng Qu

Geminiviruses possess single-stranded, circular DNA genomes and control the transcription of their late genes, including BV1 of many bipartite begomoviruses, through transcriptional activation by the early expressing AC2 protein. DNA binding by AC2 is not sequence-specific; hence, the specificity of AC2 activation is thought to be conferred by plant transcription factors (TFs) recruited by AC2 in infected cells. However, the exact TFs AC2 recruits are not known for most viruses. Here, we report a systematic examination of the BV1 promoter (PBV1) of the mungbean yellow mosaic virus (MYMV) for conserved promoter motifs. We found that MYMV PBV1 contains three abscisic acid (ABA)-responsive elements (ABREs) within its first 70 nucleotides. Deleting these ABREs, or mutating them all via site-directed mutagenesis, abolished the capacity of PBV1 to respond to AC2-mediated transcriptional activation. Furthermore, ABRE and other related ABA-responsive elements were prevalent in more than a dozen Old World begomoviruses we inspected. Together, these findings suggest that ABA-responsive TFs may be recruited by AC2 to BV1 promoters of these viruses to confer specificity to AC2 activation. These observations are expected to guide the search for the actual TF(s), furthering our understanding of the mechanisms of AC2 action.


Author(s):  
Rong Sun ◽  
Junping Han ◽  
Limin Zheng ◽  
Feng Qu

Geminiviruses possess single-stranded, circular DNA genomes, and control the transcription of their late genes, including BV1 of many bipartite begomoviruses, through transcriptional activation by the early expressing AC2 protein. DNA binding by AC2 is not sequence-specific, hence the specificity of AC2 activation is thought to be conferred by plant transcription factors (TFs) recruited by AC2 in infected cells. However, the exact TFs AC2 recruits are not known for most viruses. Here we report a systematic examination of the BV1 promoter (PBV1) of mungbean yellow mosaic virus (MYMV) for conserved promoter motifs. We found that MYMV PBV1 contains three abscisic acid (ABA)-responsive elements (ABREs) within its first 70 nucleotides. Deleting these ABREs, or mutating them all via site-directed mutagenesis, abolished the capacity of PBV1 to respond to AC2-mediated transcriptional activation. Furthermore, ABRE and other related ABA-responsive elements were prevalent in more than a dozen Old World begomoviruses we inspected. Together these findings suggest that ABA-responsive TFs may be recruited by AC2 to BV1 promoters of these viruses to confer specificity to AC2 activation. These observations are expected to guide the search for the actual TF(s), furthering our understanding of the mechanism of AC2 action.


2020 ◽  
Author(s):  
Brayan Stiven Arango-Gil ◽  
Sebastián Peña-Buitrago ◽  
Jhon Carlos Castaño-Osorio ◽  
Claudia Viviana Granobles-Velandia

ABSTRACTShiga toxin-producing Escherichia coli (STEC) is a bacterial pathogen that cause diarrhea and severe human diseases. Its principal virulence factor are the Shiga toxins Stx1 and Stx2 which have been identified diverse subtypes considered to be responsible for severe complications of STEC infection. These toxins are encoded in temperate bacteriophages and their expression is linked to phage lithic cycle, which is regulated by late genes and the Q anti-terminator protein. The aim of this study was to characterize biologically and molecularly STEC strains encoding stx2 gene isolated from cattle feces in Colombia. We selected six STEC strains, which were evaluated its Stx production, the Stx2 subtypes, induction of the lithic cycle of bacteriophages and its late region. The results evidenced two highlighted strains with high levels of Stx production and induction of the lithic cycle, compared with the others. Likewise, the strains evaluated showed three Stx2 subtypes: Stx2a, Stx2c, and Stx2d. Regarding the late region, most of the strains carried the qO111 allele and only one strain showed differences in the ninG gene. Although the sample was limited, variability was observed in the Stx production assay, induction of the lithic cycle, Stx2 subtypes and late region of the phages, which could indicate the diversity of the phages carrying STEC strains in Colombia.


2020 ◽  
Author(s):  
Wurihan Wurihan ◽  
Yi Zou ◽  
Alec M. Weber ◽  
Korri Weldon ◽  
Yehong Huang ◽  
...  

ABSTRACTThe obligate intracellular bacterium Chlamydia trachomatis is an important human pathogen whose biphasic developmental cycle consists of an infectious elementary body and a replicative reticulate body. Whereas σ66, the primary sigma factor, is necessary for transcription of most chlamydial genes throughout the developmental cycle, σ28 is required for expression of some late genes. We previously showed that the Chlamydia-specific transcription factor GrgA physically interacts with both of these sigma factors and activates transcription from σ66- and σ28-dependent promoters in vitro. Here, we investigate the organismal functions of GrgA. We show that GrgA overexpression decreased RB proliferation via time-dependent transcriptomic changes. Significantly, σ66-dependent genes that code for two important transcription repressors are among the direct targets of GrgA. One of these repressors is Euo, which prevents the expression of late genes during early phases. The other is HrcA, which regulates gene expression in response to heat shock. The direct regulon of GrgA also includes a σ28-dependent gene that codes for the putative virulence factor PmpI. Conditional overexpression of Euo and HrcA also inhibited chlamydial growth and affected GrgA expression. Transcriptomic studies suggest that GrgA, Euo, and HrcA have distinct but overlapping indirect regulons. Furthermore, overexpression of either GrgA leads to decreased expression of numerous tRNAs. These findings indicate that a GrgA-mediated transcriptional regulatory network controls C. trachomatis growth and development.IMPORTANCEChlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen worldwide and is a leading cause of preventable blindness in under-developed areas as well as developed countries. Previous studies showed that the novel transcription factor GrgA activated chlamydial gene transcription in vitro, but did not addressed the organismal function of GrgA. Here, we demonstrate growth inhibition in C. trachomatis engineered to conditionally overexpress GrgA. GrgA overexpression immediately increases the expression of two other critical transcription factors (Euo and HrcA) and a candidate virulence factor (PmpI), among several other genes. We also reveal chlamydial growth reduction and transcriptomic changes including decreased GrgA mRNA levels in response to either Euo or HrcA overexpression. Thus, the transcription network controlled by GrgA likely plays a crucial role in chlamydial growth and pathogenesis.


2020 ◽  
Vol 279 ◽  
pp. 197889
Author(s):  
Qingying Lai ◽  
Lixia Xu ◽  
Yanling Wang ◽  
Wangtai Luo ◽  
Leyuan Zhu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Qiang Zhang ◽  
Christopher J. Rosario ◽  
Lauren M. Sheehan ◽  
Syed M. Rizvi ◽  
Julie A. Brothwell ◽  
...  

ABSTRACT A critical step in intracellular Chlamydia infection is the production of infectious progeny through the expression of late genes. This differentiation step involves conversion from a reticulate body (RB), which is the replicating form of the bacterium, into an elementary body (EB), which is the developmental form that spreads the infection to a new host cell. EUO is an important chlamydial transcription factor that controls the expression of late genes, but the mechanisms that regulate EUO are not known. We report that a plasmid-encoded protein, Pgp4, enhanced the repressor activity of EUO. Pgp4 did not function as a transcription factor because it did not bind or directly modulate transcription of its target promoters. Instead, Pgp4 increased the ability of EUO to bind and repress EUO-regulated promoters in vitro and physically interacted with EUO in pulldown assays with recombinant proteins. We detected earlier onset of EUO-dependent late gene expression by immunofluorescence microscopy in Pgp4-deficient C. trachomatis and C. muridarum strains. In addition, the absence of Pgp4 led to earlier onset of RB-to-EB conversion in C. muridarum. These data support a role for Pgp4 as a negative regulator of chlamydial transcription that delays late gene expression. Our studies revealed that Pgp4 also has an EUO-independent function as a positive regulator of chlamydial transcription. IMPORTANCE Chlamydia trachomatis is an important human pathogen that causes more than 150 million active cases of genital and eye infection in the world. This obligate intracellular bacterium produces infectious progeny within an infected human cell through the expression of late chlamydial genes. We showed that the ability of a key chlamydial transcription factor, EUO, to repress late genes was enhanced by a plasmid-encoded protein, Pgp4. In addition, studies with Chlamydia Pgp4-deficient strains provide evidence that Pgp4 delays late gene expression in infected cells. Thus, Pgp4 is a novel regulator of late gene expression in Chlamydia through its ability to enhance the repressor function of EUO.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites. IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Allison L. Didychuk ◽  
Angelica F. Castañeda ◽  
Lola O. Kushnir ◽  
Carolyn J. Huang ◽  
Britt A. Glaunsinger

ABSTRACT Late gene transcription in the beta- and gammaherpesviruses depends on a set of virally encoded transcriptional activators (vTAs) that hijack the host transcriptional machinery and direct it to a subset of viral genes that are required for completion of the viral replication cycle and capsid assembly. In Kaposi’s sarcoma-associated herpesvirus (KSHV), these vTAs are encoded by ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. Assembly of the vTAs into a complex is critical for late gene transcription, and thus, deciphering the architecture of the complex is central to understanding its transcriptional regulatory activity. Here, we generated an ORF66-null virus and confirmed that it fails to produce late genes and infectious virions. We show that ORF66 is incorporated into the vTA complex primarily through its interaction with ORF34, which is dependent upon a set of four conserved cysteine-rich motifs in the C-terminal domain of ORF66. While both ORF24 and ORF66 occupy the canonical K8.1 late gene promoter, their promoter occupancy requires the presence of the other vTAs, suggesting that sequence-specific, stable binding requires assembly of the entire complex on the promoter. Additionally, we found that ORF24 expression is impaired in the absence of a stable vTA complex. This work extends our knowledge about the architecture of the KSHV viral preinitiation complex and suggests that it functions as a complex to recognize late gene promoters. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is an oncogenic gammaherpesvirus that is the causative agent of multiple human cancers. The release of infectious virions requires the production of capsid proteins and other late genes, whose production is transcriptionally controlled by a complex of six virally encoded proteins that hijack the host transcription machinery. It is poorly understood how this complex assembles or what function five of its six components play in transcription. Here, we demonstrate that ORF66 is an essential component of this complex in KSHV and that its inclusion in the complex depends upon its C-terminal domain, which contains highly conserved cysteine-rich motifs reminiscent of zinc finger motifs. Additionally, we examined the assembly of the viral preinitiation complex at late gene promoters and found that while sequence-specific binding of late gene promoters requires ORF24, it additionally requires a fully assembled viral preinitiation complex.


Sign in / Sign up

Export Citation Format

Share Document