scholarly journals Murine Gammaherpesvirus 68 Has Evolved Gamma Interferon and Stat1-Repressible Promoters for the Lytic Switch Gene 50

2010 ◽  
Vol 84 (7) ◽  
pp. 3711-3717 ◽  
Author(s):  
Megan M. Goodwin ◽  
Susan Canny ◽  
Ashley Steed ◽  
Herbert W. Virgin

ABSTRACT Cytokines regulate viral gene expression with important consequences for viral replication and pathogenesis. Gamma interferon (IFN-γ) is a key regulator of chronic murine gammaherpesvirus 68 (γHV68) infection and a potent inhibitor of γHV68 reactivation from latency. Macrophages are the cell type that is responsive to the IFN-γ-mediated control of γHV68 reactivation; however, the molecular mechanism of this IFN-γ action is undefined. Here we report that IFN-γ inhibits lytic replication of γHV68 in primary bone marrow-derived macrophages and decreases transcript levels for the essential lytic switch gene 50. Interestingly, IFN-γ suppresses the activity of the two known gene 50 promoters, demonstrating that an inflammatory cytokine can directly regulate the promoters for the γHV68 lytic switch gene. Stat1, but not IFN-α/β signaling, is required for IFN-γ action. Moreover, Stat1 deficiency increases basal γHV68 replication, gene 50 expression, and promoter activity. Together, these data identify IFN-γ and Stat1 as being negative regulators of the γHV68 lytic cycle and raise the possibility that γHV68 maintains IFN-γ/Stat1-responsive gene 50 promoters to facilitate cell-extrinsic control over the interchange between the lytic and latent cycles.

2006 ◽  
Vol 80 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Ashley L. Steed ◽  
Erik S. Barton ◽  
Scott A. Tibbetts ◽  
Daniel L. Popkin ◽  
Mary L. Lutzke ◽  
...  

ABSTRACT Establishment of latent infection and reactivation from latency are critical aspects of herpesvirus infection and pathogenesis. Interfering with either of these steps in the herpesvirus life cycle may offer a novel strategy for controlling herpesvirus infection and associated disease pathogenesis. Prior studies show that mice deficient in gamma interferon (IFN-γ) or the IFN-γ receptor have elevated numbers of cells reactivating from murine gammaherpesvirus 68 (γHV68) latency, produce infectious virus after the establishment of latency, and develop large-vessel vasculitis. Here, we demonstrate that IFN-γ is a powerful inhibitor of reactivation of γHV68 from latency in tissue culture. In vivo, IFN-γ controls viral gene expression during latency. Importantly, depletion of IFN-γ in latently infected mice results in an increased frequency of cells reactivating virus. This demonstrates that IFN-γ is important for immune surveillance that limits reactivation of γHV68 from latency.


1999 ◽  
Vol 73 (3) ◽  
pp. 2321-2332 ◽  
Author(s):  
Herbert W. Virgin ◽  
Rachel M. Presti ◽  
Xi-Yang Li ◽  
Carl Liu ◽  
Samuel H. Speck

ABSTRACT The program(s) of gene expression operating during murine gammaherpesvirus 68 (γHV68) latency is undefined, as is the relationship between γHV68 latency and latency of primate gammaherpesviruses. We used a nested reverse transcriptase PCR strategy (sensitive to approximately one copy of γHV68 genome for each genomic region tested) to screen for the presence of viral transcripts in latently infected mice. Based on the positions of known latency-associated genes in other gammaherpesviruses, we screened for the presence of transcripts corresponding to 11 open reading frames (ORFs) in the γHV68 genome in RNA from spleens and peritoneal cells of latently infected B-cell-deficient (MuMT) mice which have been shown contain high levels of reactivable latent γHV68 (K. E. Weck, M. L. Barkon, L. I. Yoo, S. H. Speck, and H. W. Virgin, J. Virol. 70:6775–6780, 1996). To control for the possible presence of viral lytic activity, we determined that RNA from latently infected peritoneal and spleen cells contained few or no detectable transcripts corresponding to seven ORFs known to encode viral gene products associated with lytic replication. However, we did detect low-level expression of transcripts arising from the region of gene 50 (encoding the putative homolog of the Epstein-Barr virus BRLF1 transactivator) in peritoneal but not spleen cells. Latently infected peritoneal cells consistently scored for expression of RNA derived from 4 of the 11 candidate latency-associated ORFs examined, including the regions of ORF M2, ORF M11 (encoding v-bcl-2), gene 73 (a homolog of the Kaposi’s sarcoma-associated herpesvirus [human herpesvirus 8] gene encoding latency-associated nuclear antigen), and gene 74 (encoding a G-protein coupled receptor homolog, v-GCR). Latently infected spleen cells consistently scored positive for RNA derived from 3 of the 11 candidate latency-associated ORFs examined, including ORF M2, ORF M3, and ORF M9. To further characterize transcription of these candidate latency-associated ORFs, we examined their transcription in lytically infected fibroblasts by Northern analysis. We detected abundant transcription from regions of the genome containing ORF M3 and ORF M9, as well as the known lytic-cycle genes. However, transcription of ORF M2, ORF M11, gene 73, and gene 74 was barely detectable in lytically infected fibroblasts, consistent with a role of these viral genes during latent infection. We conclude that (i) we have identified several candidate latency genes of murine γHV68, (ii) expression of genes during latency may be different in different organs, consistent with multiple latency programs and/or multiple cellular sites of latency, and (iii) regions of the viral genome (v-bcl-2 gene, v-GCR gene, and gene 73) are transcribed during latency with both γHV68 and primate gammaherpesviruses. The implications of these findings for replacing previous operational definitions of γHV68 latency with a molecular definition are discussed.


2002 ◽  
Vol 76 (20) ◽  
pp. 10518-10523 ◽  
Author(s):  
Jason B. Weinberg ◽  
Mary L. Lutzke ◽  
Stacey Efstathiou ◽  
Steven L. Kunkel ◽  
Rosemary Rochford

ABSTRACT We observed two patterns of chemokine expression in the lungs of mice infected with murine gammaherpesvirus 68: peaks of chemokine expression correlated with or occurred after the peak of viral gene expression. Chemokine expression remained elevated through 29 days postinfection.


2000 ◽  
Vol 74 (8) ◽  
pp. 3659-3667 ◽  
Author(s):  
Ting-Ting Wu ◽  
Edward J. Usherwood ◽  
James P. Stewart ◽  
Anthony A. Nash ◽  
Ren Sun

ABSTRACT Herpesviruses are characterized as having two distinct life cycle phases: lytic replication and latency. The mechanisms of latency establishment and maintenance, as well as the switch from latency to lytic replication, are poorly understood. Human gammaherpesviruses, including Epstein-Barr virus (EBV) and human herpesvirus-8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), are associated with lymphoproliferative diseases and several human tumors. Unfortunately, the lack of cell lines to support efficient de novo productive infection and restricted host ranges of EBV and HHV-8 make it difficult to explore certain important biological questions. Murine gammaherpesvirus 68 (MHV-68, or γHV68) can establish de novo lytic infection in a variety of cell lines and is also able to infect laboratory mice, offering an ideal model with which to study various aspects of gammaherpesvirus infection. Here we describe in vitro studies of the mechanisms of the switch from latency to lytic replication of MHV-68. An MHV-68 gene, rta (replication and transcription activator), encoded primarily by open reading frame 50 (ORF50), is homologous to the rta genes of other gammaherpesviruses, including HHV-8 and EBV. HHV-8 and EBV Rta have been shown to play central roles in viral reactivation from latency. We first studied the kinetics of MHV-68 rta gene transcription during de novo lytic infection. MHV-68 rta was predominantly expressed as a 2-kb immediate-early transcript. Sequence analysis of MHV-68 rta cDNA revealed that an 866-nucleotide intron 5′ of ORF50 was removed to create the Rta ORF of 583 amino acids. To test the functions of MHV-68 Rta in reactivation, a plasmid expressing Rta was transfected into a latently infected cell line, S11E, which was established from a B-cell lymphoma in an MHV-68-infected mouse. Rta induced expression of viral early and late genes, lytic replication of viral DNA, and production of infectious viral particles. We conclude that Rta alone is able to disrupt latency, activate viral lytic replication, and drive the lytic cycle to completion. This study indicates that MHV-68 provides a valuable model for investigating regulation of the balance between latency and lytic replication in vitro and in vivo.


2003 ◽  
Vol 77 (4) ◽  
pp. 2410-2417 ◽  
Author(s):  
Heather M. Coleman ◽  
Brigitte de Lima ◽  
Victoria Morton ◽  
Philip G. Stevenson

ABSTRACT The lytic cycle functions of gammaherpesviruses have received relatively little attention to date, at least in part due to the lack of a convenient experimental model. The murine gammaherpesvirus 68 (MHV-68) now provides such a model and allows the roles of individual lytic cycle gammaherpesvirus proteins to be evaluated in vivo. We have used MHV-68 to determine the contribution of a gammaherpesvirus thymidine kinase (TK) to viral lytic replication and latency establishment. MHV-68 mutants with a disrupted TK gene grew normally in vitro but showed a severe attenuation of replication in the lungs after intranasal inoculation, with lytic titers at least 1,000-fold lower than those of wild-type and revertant viruses. Nevertheless, the establishment of latency by the TK-deficient mutants, while delayed, was not prevented by their lytic replication deficit. The viral TK clearly plays a crucial role in the capacity of MHV-68 to replicate efficiently in its natural host but does not seem to be essential to establish a persistent infection. The potential of TK-deficient mutants as gammaherpesvirus vaccines is discussed.


Immunology ◽  
2013 ◽  
Vol 139 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Stephen B. Gauld ◽  
Jessica L. De Santis ◽  
Joseph M. Kulinski ◽  
Jennifer A. McGraw ◽  
Steven M. Leonardo ◽  
...  

2007 ◽  
Vol 81 (21) ◽  
pp. 11957-11971 ◽  
Author(s):  
J. Craig Forrest ◽  
Clinton R. Paden ◽  
Robert D. Allen ◽  
Julie Collins ◽  
Samuel H. Speck

ABSTRACT Gammaherpesviruses establish lifelong, latent infections in host lymphocytes, during which a limited subset of viral gene products facilitates maintenance of the viral episome. Among the gamma-2-herpesvirus (rhadinovirus) subfamily, this includes expression of the conserved ORF73-encoded LANA proteins. We previously demonstrated by loss-of-function mutagenesis that the murine gammaherpesvirus 68 (MHV68) ORF73 gene product, mLANA, is required for the establishment of latency following intranasal inoculation of mice (N. J. Moorman, D. O. Willer, and S. H. Speck, J. Virol. 77:10295-10303, 2003). mLANA-deficient viruses also exhibited a defect in acute virus replication in the lungs of infected mice. The latter observation led us to examine the role of mLANA in productive viral replication. We assessed the capacity of mLANA-deficient virus (73.Stop) to replicate in cell culture at low multiplicities of infection (MOIs) and found that 73.Stop growth was impaired in murine fibroblasts but not in Vero cells. A recombinant virus expressing an mLANA-green fluorescent protein (GFP) fusion revealed that mLANA is expressed throughout the virus replication cycle. In addition, 73.Stop infection of murine fibroblasts at high MOIs was substantially more cytotoxic than infection with a genetically repaired marker rescue virus (73.MR), a phenotype that correlated with enhanced kinetics of viral gene expression and increased activation of p53. Notably, augmented cell death, viral gene expression, and p53 induction were independent of viral DNA replication. Expression of a mLANA-GFP fusion protein in fibroblasts correlated with both reduced p53 stabilization and reduced cell death following treatment with p53-inducing agonists. In agreement, accentuated cell death associated with 73.Stop infection was reduced in p53-deficient murine embryonic fibroblasts. Additionally, replication of 73.Stop in p53-deficient cells was restored to levels comparable to those of 73.MR. More remarkably, the absence of p53 led to an overall delay in replication for both 73.Stop and 73.MR viruses, which correlated with delayed viral gene expression, indicating a role for p53 in MHV68 replication. Consistent with these findings, the expression of replication-promoting viral genes was positively influenced by p53 overexpression or treatment with the p53 agonist etoposide. Overall, these data demonstrate the importance of mLANA in MHV68 replication and suggest that LANA proteins limit the induction of cellular stress responses to regulate the viral gene expression cascade and limit host cell injury.


2009 ◽  
Vol 83 (21) ◽  
pp. 11397-11401 ◽  
Author(s):  
Katherine S. Lee ◽  
Carlyne D. Cool ◽  
Linda F. van Dyk

ABSTRACT Gamma interferon (IFN-γ) is critical for the control of chronic infection with murine gammaherpesvirus 68 (γHV68). Current data indicate that IFN-γ has a lesser role in the control of acute replication of γHV68. Here, we show that IFN-γ-deficient mice on the BALB/c genetic background poorly control acute viral replication and succumb to early death by acute pneumonia. Notably, this acute, lethal pneumonia was dependent not only on the viral dose, but also on specific viral genes including the viral cyclin gene, previously identified to be important in promoting optimal chronic infection and reactivation from latency.


2010 ◽  
Vol 84 (22) ◽  
pp. 12039-12047 ◽  
Author(s):  
Megan M. Goodwin ◽  
Jerome M. Molleston ◽  
Susan Canny ◽  
Mohamed Abou El Hassan ◽  
Erin K. Willert ◽  
...  

ABSTRACT Gammaherpesviruses are important oncogenic pathogens that transit between lytic and latent life cycles. Silencing the lytic gene expression program enables the establishment of latency and a lifelong chronic infection of the host. In murine gammaherpesvirus 68 (MHV68, γHV68), essential lytic switch gene 50 controls the interchange between lytic and latent gene expression programs. However, negative regulators of gene 50 expression remain largely undefined. We report that the MHV68 lytic cycle is silenced in infected macrophages but not fibroblasts and that histone deacetylases (HDACs) mediate silencing. The HDAC inhibitor trichostatin A (TSA) acts on the gene 50 promoter to induce lytic replication of MHV68. HDAC3, HDAC4, and the nuclear receptor corepressor (NCoR) are required for efficient silencing of gene 50 expression. NCoR is critical for transcriptional repression of cellular genes by unliganded nuclear receptors. Retinoic acid, a known ligand for the NCoR complex, derepresses gene 50 expression and enhances MHV68 lytic replication. Moreover, HDAC3, HDAC4, and NCoR act on the gene 50 promoter and are recruited to this promoter in a retinoic acid-responsive manner. We provide the first example of NCoR-mediated, HDAC-dependent regulation of viral gene expression.


Virology ◽  
2009 ◽  
Vol 387 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Danyang Gong ◽  
Jing Qi ◽  
Vaithilingaraja Arumugaswami ◽  
Ren Sun ◽  
Hongyu Deng

Sign in / Sign up

Export Citation Format

Share Document