b cell tolerance
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 45)

H-INDEX

48
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Etienne Masle-Farquhar ◽  
Timothy J Peters ◽  
Katherine JL Jackson ◽  
Mandeep Singh ◽  
Cindy S Ma ◽  
...  

Dysregulated STAT3 signalling is correlated with antibody-mediated autoimmunity and B- cell neoplasia, but its effect on B cells is underexplored. Here we address this in children with STAT3 gain-of-function (GOF) syndrome and in mice with STAT3T716M, the most common STAT3 GOF syndrome human mutation, or STAT3K658N, a dimerization interface mutation responsible for STAT3 GOF syndrome in two children. The main B cell consequence of overactive STAT3 was accumulation of CD19high CD21low atypical memory B cells in humans and of CD21low CD23low B cells in mice resembling age-associated B cells expressing T-bet, CD11c and plasma cell differentiation genes. Overactive STAT3 within B cells increased expression of many genes in the B cell receptor and T cell help pathways, increased the tolerogenic receptor CD22, but opposed B cell tolerance checkpoints and increased formation of T-bet+ B cells upon BCR and CD40 stimulation. These results reveal overactive STAT3 as a central driver of a key class of disease-associated B-lymphocytes in humans and mice.


2021 ◽  
Vol 22 (24) ◽  
pp. 13560
Author(s):  
Benjamin Y. F. So ◽  
Desmond Y. H. Yap ◽  
Tak Mao Chan

Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 997-997
Author(s):  
Yongwei Zheng ◽  
Mei Yu ◽  
Yuhong Chen ◽  
Liquan Xue ◽  
Wen Zhu ◽  
...  

Abstract The CARD11-Bcl10-Malt1 (CBM) signalosome controls TAK1 activation to regulate B-cell receptor (BCR)-induced NF-κB activation and B cell biology. The biological function of caspase recruitment domain family member 19 (CARD19), originally identified as a BCL10-interacting CARD protein (BinCARD), is not known. Here we found CARD19 strongly interacted with TAK1 but not BCL10 or other CBM components and prevented TAK1's association with TAB2, thereby inhibiting TAB2-mediated TAK1 ubiquitination and activation and subsequent NF-κB activation. CARD19 was ubiquitously expressed in hematopoietic lineages but its deficiency in mice had no effect on hematopoiesis, including B cell development and humoral immune response. CARD19 deficiency enhanced clonal deletion, receptor editing and anergy of self-reactive B cells, thus reducing autoantibody production in vivo. Mechanistically, CARD19 deficiency led to an increase of BCR/TAK1-mediated NF-κB activation. Activation of NF-κB, such as c-Rel, was responsible for the up-regulation of BCR-induced expression of the transcription factor early growth response genes 2 and 3 (Egr2, Egr3) and the E3 ubiquitin ligases, c-Cbl and Cbl-b, the important inducers of B-cell tolerance in B cells. Further, high-throughput RNA sequencing analysis revealed that CARD19 deficiency did not affect the overall antigen-induced gene expression in naïve B cells but suppressed BCR signaling to increase hyporesponsiveness of self-reactive B cells. Consequently, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus (SLE) and autoimmunity in a B cell-intrinsic manner. Taken together, CARD19 negatively regulates BCR-induced NF-κB activation via blocking TAK1/TAB2 interaction and its deficiency leads to NF-κB-induced expression of Egr2/3 and c-Cbl/Cbl-b in self-reactive B cells, which enhances B-cell tolerance and thus prevents autoimmunity. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 7 (41) ◽  
Author(s):  
Junwei Zeng ◽  
Rajindra P. Aryal ◽  
Kathrin Stavenhagen ◽  
Chi Luo ◽  
Renyan Liu ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10464
Author(s):  
Phillip P. Domeier ◽  
Ziaur S.M. Rahman

There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Sanne Reijm ◽  
Theresa Kissel ◽  
Gerrie Stoeken-Rijsbergen ◽  
Linda M. Slot ◽  
Corrie M. Wortel ◽  
...  

Abstract Background Anti-modified protein antibodies (AMPA) targeting citrullinated, acetylated and/or carbamylated self-antigens are hallmarks of rheumatoid arthritis (RA). Although AMPA-IgG cross-reactivity to multiple post-translational modifications (PTMs) is evident, it is unknown whether the first responding B cells, expressing IgM, display similar characteristics or if cross-reactivity is crucially dependent on somatic hypermutation (SHM). We now studied the reactivity of (germline) AMPA-IgM to further understand the breach of B cell tolerance and to identify if cross-reactivity depends on extensive SHM. Moreover, we investigated whether AMPA-IgM can efficiently recruit immune effector mechanisms. Methods Polyclonal AMPA-IgM were isolated from RA patients and assessed for cross-reactivity towards PTM antigens. AMPA-IgM B cell receptor sequences were obtained by single cell isolation using antigen-specific tetramers. Subsequently, pentameric monoclonal AMPA-IgM, their germline counterparts and monomeric IgG variants were generated. The antibodies were analysed on a panel of PTM antigens and tested for complement activation. Results Pentameric monoclonal and polyclonal AMPA-IgM displayed cross-reactivity to multiple antigens and different PTMs. PTM antigen recognition was still present, although reduced, after reverting the IgM into germline. Valency of AMPA-IgM was crucial for antigen recognition as PTM-reactivity significantly decreased when AMPA-IgM were expressed as IgG. Furthermore, AMPA-IgM was 15- to 30-fold more potent in complement-activation compared to AMPA-IgG. Conclusions We provide first evidence that AMPA-IgM are cross-reactive towards different PTMs, indicating that PTM (cross-)reactivity is not confined to IgG and does not necessarily depend on extensive somatic hypermutation. Moreover, our data indicate that a diverse set of PTM antigens could be involved in the initial tolerance breach in RA and suggest that AMPA-IgM can induce complement-activation and thereby inflammation.


Cell Reports ◽  
2021 ◽  
Vol 36 (9) ◽  
pp. 109624
Author(s):  
Peiqi Ou ◽  
Albert Stanek ◽  
Zack Huan ◽  
Christopher A.J. Roman ◽  
Chongmin Huan

2021 ◽  
Author(s):  
Salome Glauzy ◽  
Brennan Olson ◽  
Christopher K. May ◽  
Daniele Parisi ◽  
Christopher Massad ◽  
...  

2021 ◽  
Author(s):  
Chad R Dufaud ◽  
Andrew G Shuparski ◽  
Brett W Higgins ◽  
Louise J McHeyzer-Williams ◽  
Michael G McHeyzer-Williams

Adaptive B cell immunity to environmental antigens must be regulated by multiple CD4 T cell dependent tolerance mechanisms. Using integrated single cell strategies, we demonstrate that acute PD-1 blockade induces extensive and selective local anti-inflammatory IgG1 plasma cell (PC) differentiation. Expansion of pre-existing IgG1 germinal center (GC) B cell and enhanced GC programming without memory B cell involvement reveals an isotype-specific GC checkpoint that blocks steady-state IgG1 antibody maturation. While there was no adjuvant impact on immunization, acute PD-1 checkpoint blockade exaggerates anti-commensal IgG1 antibody production, alters microbiome composition and exerts its action in a CD4 T cell dependent manner. These findings reveal a PD-1 controlled adaptive B cell tolerance checkpoint that selectively constrains maturation of pre-existing anti-inflammatory antibodies to prevent over-reaction to steady-state foreign antigens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shin-Young Na ◽  
Gurumoorthy Krishnamoorthy

There is a great interest in developing antigen-specific therapeutic approaches for the treatment of autoimmune diseases without compromising normal immune function. The key challenges are to control all antigen-specific lymphocyte populations that contribute to pathogenic inflammatory processes and to provide long-term protection from disease relapses. Here, we show that myelin oligodendrocyte glycoprotein (MOG)-specific tolerance can be established by ectopic expression of MOG in the immune organs. Using transgenic mice expressing MOG-specific CD4, CD8, and B cell receptors, we show that MOG expression in the bone marrow cells results in impaired development of MOG-specific lymphocytes. Ectopic MOG expression has also resulted in long-lasting protection from MOG-induced autoimmunity. This finding raises hope that transplantation of autoantigen-expressing bone marrow cells as a therapeutic strategy for specific autoantigen-driven autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document