scholarly journals Isolation and Characterization of Replication-Competent Human Immunodeficiency Virus Type 1 from a Subset of Elite Suppressors

2006 ◽  
Vol 81 (5) ◽  
pp. 2508-2518 ◽  
Author(s):  
Joel N. Blankson ◽  
Justin R. Bailey ◽  
Seema Thayil ◽  
Hung-Chih Yang ◽  
Kara Lassen ◽  
...  

ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected individuals who control viremia to levels below the limit of detection of current assays. The mechanisms involved in this control have not been fully elucidated. Several studies have demonstrated that some ES are infected with defective viruses, but it remains unclear whether others are infected with replication-competent HIV-1. To answer this question, we used a sensitive coculture assay in an attempt to isolate replication-competent virus from a cohort of 10 ES. We successfully cultured six replication-competent isolates from 4 of the 10 ES. The frequency of latently infected cells in these patients was more than a log lower than that seen in patients on highly active antiretroviral therapy with undetectable viral loads. Full-length sequencing of all six isolates revealed no large deletions in any of the genes. A few mutations and small insertions and deletions were found in some isolates, but phenotypic analysis of the affected genes suggested that their function remained intact. Furthermore, all six isolates replicated as well as standard laboratory strains in vitro. The results suggest that some ES are infected with HIV-1 isolates that are fully replication competent and that long-term immunologic control of replication-competent HIV-1 is possible.

2006 ◽  
Vol 51 (2) ◽  
pp. 707-715 ◽  
Author(s):  
Masanori Baba ◽  
Hiroshi Miyake ◽  
Xin Wang ◽  
Mika Okamoto ◽  
Katsunori Takashima

ABSTRACT TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.


2004 ◽  
Vol 78 (17) ◽  
pp. 9105-9114 ◽  
Author(s):  
Kara G. Lassen ◽  
Justin R. Bailey ◽  
Robert F. Siliciano

ABSTRACT A stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting memory CD4+ T cells presents a barrier to eradication of the infection even in patients on highly active antiretroviral therapy. Potential mechanisms for latency include inaccessibility of the integrated viral genome, absence of key host transcription factors, premature termination of HIV-1 RNAs, and abnormal splicing patterns. To differentiate among these mechanisms, we isolated extremely pure populations of resting CD4+ T cells from patients on highly active antiretroviral therapy. These cells did not produce virus but retained the capacity to do so if appropriately stimulated. Products of HIV-1 transcription were examined in purified resting CD4+ T cells. Although short, prematurely terminated HIV-1 transcripts have been suggested as a marker for latently infected cells, the production of short transcripts had not been previously demonstrated in purified populations of resting CD4+ T cells. By separating RNA into polyadenylated and nonpolyadenylated fractions, we showed that resting CD4+ T cells from patients on highly active antiretroviral therapy produce abortive transcripts that lack a poly(A) tail and that terminate prior to nucleotide 181. Short transcripts dominated the pool of total HIV-1 transcripts in resting CD4+ T cells. Processive, polyadenylated HIV-1 mRNAs were also present at a low level. Both unspliced and multiply spliced forms were found. Taken together, these results show that the nonproductive nature of the infection in resting CD4+ T cells from patients on highly active antiretroviral therapy is not due to absolute blocks at the level of either transcriptional initiation or elongation but rather relative inefficiencies at multiple steps.


2012 ◽  
Vol 93 (6) ◽  
pp. 1151-1172 ◽  
Author(s):  
Satinder Dahiya ◽  
Michael R. Nonnemacher ◽  
Brian Wigdahl

Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte–macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein–protein and protein–DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.


1995 ◽  
Vol 6 (2) ◽  
pp. 73-79 ◽  
Author(s):  
M. Seki ◽  
Y. Sadakata ◽  
S. Yuasa ◽  
M. Baba

MKC-442, 6-benzy 1-1-ethoxymethyl-5-isopropyIuraciI (l-EBU), is a potent and selective non-nucleoside inhibitor of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). Nevirapine, another non-nucleoside RT inhibitor (NNRTI), is associated with rapid emergence of drug-resistant variants during in vitro passages of HIV-1. The emergence of resistant viruses to MKC-442 or nevirapine was examined in vitro. MT-4 cells infected with a clinical isolate (HE) of HIV-1 were cultivated in medium containing excess concentrations of these drugs, and the drug susceptibilities of the breakthrough viruses recovered from the medium were measured. Although nevirapine lost its antiviral activity after six passages, a delay in the emergence of fully resistant viruses was observed for MKC-442. Two resistant clones for each drug were isolated and nucleotide sequences within the RT region were analysed. An amino acid substitution at position 181 (Tyr to Cys) was found, with additional substitutions at positions 103 (Lys to Arg) and 108 (Val to lle) in the MKC-442-resistant viruses. These clones showed various susceptibilities to MKC-442, and cross-resistance to other NNRTIs but not to AZT. These results suggest that the major binding site of MKC-442 on the HIV-1 RT is the tyrosine residue common to these NNRTIs, and that drug resistance to NNRTIs is dependent on both the quality and the quantity of mutations within the HIV-1 RT gene.


2010 ◽  
Vol 54 (10) ◽  
pp. 4451-4463 ◽  
Author(s):  
Romuald Corbau ◽  
Julie Mori ◽  
Chris Phillips ◽  
Lesley Fishburn ◽  
Alex Martin ◽  
...  

ABSTRACT The nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1). A major problem with the first approved NNRTIs was the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular K103N and Y181C, which led to resistance to the entire class. We adopted an iterative strategy to synthesize and test small molecule inhibitors from a chemical series of pyrazoles against wild-type (wt) RT and the most prevalent NNRTI-resistant mutants. The emerging candidate, lersivirine (UK-453,061), binds the RT enzyme in a novel way (resulting in a unique resistance profile), inhibits over 60% of viruses bearing key RT mutations, with 50% effective concentrations (EC50s) within 10-fold of those for wt viruses, and has excellent selectivity against a range of human targets. Altogether lersivirine is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses.


2002 ◽  
Vol 76 (5) ◽  
pp. 2206-2216 ◽  
Author(s):  
Xia Jin ◽  
Murugappan Ramanathan, ◽  
Shady Barsoum ◽  
Geoffrey R. Deschenes ◽  
Lei Ba ◽  
...  

ABSTRACT In order to boost immune responses in persons in whom highly active antiretroviral therapy (HAART) was initiated within 120 days of the onset of symptoms of newly acquired human immunodeficiency virus type 1 (HIV-1) infection, we administered vaccines containing a canarypox virus vector, vCP1452, with HIV-1 genes encoding multiple HIV-1 proteins, and recombinant gp160. Fifteen HIV-1-infected subjects who achieved sustained suppression of plasma viremia for at least 2 years were enrolled. While continuing antiretroviral therapy, each subject received at least four intramuscular injections of the vaccines on days 0, 30, 90, and 180. Adverse events were mild, with the most common being transient tenderness at the vCP1452 injection site. Of the 14 patients who completed vaccination, 13 had significant increases in anti-gp120 or anti-p24 antibody titers, and 9 had transient augmentation of their T-cell proliferation responses to gp160 and/or p24. HIV-1-specific CD8+ T cells were quantified using an intracellular gamma interferon staining assay. Among 11 patients who had increased CD8+ T-cell responses, seven had responses to more than one HIV-1 antigen. In summary, vaccination with vCP1452 and recombinant gp160 appears safe and immunogenic in newly HIV-1-infected patients on HAART.


2009 ◽  
Vol 83 (7) ◽  
pp. 3407-3412 ◽  
Author(s):  
Toshiyuki Miura ◽  
Chanson J. Brumme ◽  
Mark A. Brockman ◽  
Zabrina L. Brumme ◽  
Florencia Pereyra ◽  
...  

ABSTRACT Elite controllers (EC) of human immunodeficiency virus type 1 (HIV-1) maintain viremia below the limit of detection without antiretroviral treatment. Virus-specific cytotoxic CD8+ T lymphocytes are believed to play a crucial role in viral containment, but the degree of immune imprinting and compensatory mutations in EC is unclear. We obtained plasma gag, pol, and nef sequences from HLA-diverse subjects and found that 30 to 40% of the predefined HLA-associated polymorphic sites show evidence of immune selection pressure in EC, compared to approximately 50% of the sites in chronic progressors. These data indicate ongoing viral replication and escape from cytotoxic T lymphocytes are present even in strictly controlled HIV-1 infection.


2007 ◽  
Vol 82 (6) ◽  
pp. 3125-3130 ◽  
Author(s):  
Shiv K. Gandhi ◽  
Janet D. Siliciano ◽  
Justin R. Bailey ◽  
Robert F. Siliciano ◽  
Joel N. Blankson

ABSTRACT While many studies show that the APOBEC3 family of cytidine deaminases can inhibit human immunodeficiency virus type 1 (HIV-1) replication, the clinical significance of this host defense mechanism is unclear. Elite suppressors are HIV-1-infected individuals who maintain viral loads below 50 copies/ml without antiretroviral therapy. To determine the role of APOBEC3G/F proteins in the control of viremia in these patients, we used a novel assay to measure the frequency of hypermutated proviral genomes. In most elite suppressors, the frequency was not significantly different than that observed in patients on highly active antiretroviral therapy. Thus, enhanced APOBEC3 activity alone cannot explain the ability of elite suppressors to control viremia.


2002 ◽  
Vol 76 (8) ◽  
pp. 4138-4144 ◽  
Author(s):  
Theodore C. Pierson ◽  
Tara L. Kieffer ◽  
Christian T. Ruff ◽  
Christopher Buck ◽  
Stephen J. Gange ◽  
...  

ABSTRACT The development of surrogate markers capable of detecting residual ongoing human immunodeficiency virus type 1 (HIV-1) replication in patients receiving highly active antiretroviral therapy is an important step in understanding viral dynamics and in developing new treatment strategies. In this study, we evaluated the utility of circular forms of the viral genome for the detection of recent infection of cells by HIV-1. We measured the fate of both one-long terminal repeat (1-LTR) and 2-LTR circles following in vitro infection of logarithmically growing CD4+ T cells under conditions in which cell death was not a significant contributing factor. Circular forms of the viral genome were found to be highly stable and to decrease in concentration only as a function of dilution resulting from cell division. We conclude that these DNA circles are not intrinsically unstable in all cell types and suggest that the utility of 2-LTR circle assays in measuring recent HIV-1 infection of susceptible cells in vivo needs to be reevaluated.


Sign in / Sign up

Export Citation Format

Share Document