scholarly journals Isolation and Characterization of Human Immunodeficiency Virus Type-1 Mutants Resistant to the Non-Nucleotide Reverse Transcriptase Inhibitor MKC-442

1995 ◽  
Vol 6 (2) ◽  
pp. 73-79 ◽  
Author(s):  
M. Seki ◽  
Y. Sadakata ◽  
S. Yuasa ◽  
M. Baba

MKC-442, 6-benzy 1-1-ethoxymethyl-5-isopropyIuraciI (l-EBU), is a potent and selective non-nucleoside inhibitor of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). Nevirapine, another non-nucleoside RT inhibitor (NNRTI), is associated with rapid emergence of drug-resistant variants during in vitro passages of HIV-1. The emergence of resistant viruses to MKC-442 or nevirapine was examined in vitro. MT-4 cells infected with a clinical isolate (HE) of HIV-1 were cultivated in medium containing excess concentrations of these drugs, and the drug susceptibilities of the breakthrough viruses recovered from the medium were measured. Although nevirapine lost its antiviral activity after six passages, a delay in the emergence of fully resistant viruses was observed for MKC-442. Two resistant clones for each drug were isolated and nucleotide sequences within the RT region were analysed. An amino acid substitution at position 181 (Tyr to Cys) was found, with additional substitutions at positions 103 (Lys to Arg) and 108 (Val to lle) in the MKC-442-resistant viruses. These clones showed various susceptibilities to MKC-442, and cross-resistance to other NNRTIs but not to AZT. These results suggest that the major binding site of MKC-442 on the HIV-1 RT is the tyrosine residue common to these NNRTIs, and that drug resistance to NNRTIs is dependent on both the quality and the quantity of mutations within the HIV-1 RT gene.

1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2006 ◽  
Vol 51 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Zhijun Zhang ◽  
Wen Xu ◽  
Yung-Hyo Koh ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. However, their low genetic barriers against resistance development, cross-resistance, and serious side effects can compromise the benefits of the two current drugs in this class (efavirenz and nevirapine). In this study, we report a novel and potent NNRTI, VRX-480773, that inhibits viruses from efavirenz-resistant molecular clones and most NNRTI-resistant clinical HIV-1 isolates tested. In vitro mutation selection experiments revealed that longer times were required for viruses to develop resistance to VRX-480773 than to efavirenz. RT mutations selected by VRX-480773 after 3 months of cell culture in the presence of 1 nM VRX-480773 carried the Y181C mutation, resulting in a less-than-twofold increase in resistance to the compound. A virus containing the double mutation V106I-Y181C emerged after 4 months, causing a sixfold increase in resistance. Viruses containing additional mutations of D123G, F227L, and T369I emerged when the cultures were incubated with increasing concentrations of VRX-480773. Most of the resistant viruses selected by VRX-480773 are susceptible to efavirenz. Oral administration of VRX-480773 to dogs resulted in plasma concentrations that were significantly higher than those required for the inhibition of wild-type and mutant viruses. These results warrant further clinical development of VRX-480773 for the treatment of HIV infection in both NNRTI-naive and -experienced patients.


2006 ◽  
Vol 51 (2) ◽  
pp. 707-715 ◽  
Author(s):  
Masanori Baba ◽  
Hiroshi Miyake ◽  
Xin Wang ◽  
Mika Okamoto ◽  
Katsunori Takashima

ABSTRACT TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.


1997 ◽  
Vol 8 (4) ◽  
pp. 353-362 ◽  
Author(s):  
SW Baertschi ◽  
AS Cantrell ◽  
MT Kuhfeld ◽  
U Lorenz ◽  
DB Boyd ◽  
...  

Previous work by Hafkemeyer et al. (1991) [ Nucleic Acids Research19: 4059–4065] indicated that a degradation product of ceftazidime, termed HP 0.35, was active against the RNase H activity of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptase (RT) in vitro. Attempting to repeat these results, we isolated HP 0.35 from an aqueous degradation of ceftazidime and, after careful purification, we found HP 0.35 to be essentially inactive against both the polymerase and RNase H domains of HIV-1 RT (IC50 of >100 μg mL−1). During the investigation we discovered that polymeric degradation products of ceftazidime inhibited both the polymerase and, to a greater extent, the RNase H activities of HIV-1 RT in vitro (IC50 approximately 0.1 and 0.01 μg mL−1, respectively). Subjecting HP 0.35 to conditions under which it could polymerize induced inhibitory activity similar to that of the polymeric ceftazidime degradation products. It is proposed that the previously reported activity of HP 0.35 may have resulted from the presence of low levels of polymeric material either from incomplete purification or from polymerization of HP 0.35 during storage or in vitro testing.


2002 ◽  
Vol 76 (13) ◽  
pp. 6836-6840 ◽  
Author(s):  
P. Richard Harrigan ◽  
Mahboob Salim ◽  
David K. Stammers ◽  
Brian Wynhoven ◽  
Zabrina L. Brumme ◽  
...  

ABSTRACT The Y318F substitution in the 3′ region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been linked to nonnucleoside RT inhibitor (NNRTI) resistance in vitro. A systematic search of a large phenotypic-genotypic database (Virco) linked the Y318F substitution with a >10-fold decrease in NNRTI susceptibility in >85% of clinically derived isolates. There was a significant association between Y318F and use of delavirdine (P = 10−11) and nevirapine (P = 10−6) but not efavirenz (P = 0.3). Site-directed HIV-1 Y318F mutants in an HXB2 background displayed 42-fold-decreased susceptibility to delavirdine but <3-fold-decreased susceptibility to nevirapine or efavirenz. Combinations of Y318F with K103N, Y181C, or both resulted in decreased efavirenz susceptibility of 43-, 3.3-, and 84-fold, respectively, as well as >100- and >60-fold decreases in delavirdine and nevirapine susceptibility, respectively. These results indicate the importance of the Y318F substitution in HIV-1 drug resistance.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 495
Author(s):  
Mai Izumida ◽  
Koushirou Suga ◽  
Fumito Ishibashi ◽  
Yoshinao Kubo

In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.


1998 ◽  
Vol 42 (12) ◽  
pp. 3123-3129 ◽  
Author(s):  
Veronica Miller ◽  
Marie-Pierre de Béthune ◽  
Astrid Kober ◽  
Martin Stürmer ◽  
Kurt Hertogs ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) strains resistant to nonnucleoside reverse transcriptase inhibitors (NNRTIs) may easily be selected for in vitro and in vivo under a suboptimal therapy regimen. Although cross-resistance is extensive within this class of compounds, newer NNRTIs were reported to retain activity against laboratory strains containing defined resistance-associated mutations. We have characterized HIV-1 resistance to loviride and the extent of cross-resistance to nevirapine, delavirdine, efavirenz, HBY-097, and tivirapine in a set of 24 clinical samples from patients treated with long-term loviride monotherapy by using a recombinant virus assay. Genotypic changes associated with resistance were analyzed by population sequencing. Overall, phenotypic resistance to loviride ranged from 0.04 to 3.47 log10-fold. Resistance was observed in samples from patients who had discontinued loviride for up to 27 months. Cross-resistance to the other compounds was extensive; however, fold resistance to efavirenz was significantly lower than fold resistance to nevirapine. No genotypic changes were detected in three samples; these were sensitive to all of the NNRTIs tested. The most common genotypic change was the K103N substitution. The range of phenotypic resistance in samples containing the K103N substitution could not be predicted from a genotypic analysis of known NNRTI resistance-associated mutations. The Y181C substitution was detected in one isolate which was resistant to loviride and delavirdine but sensitive to efavirenz, HBY-097, and tivirapine. Our data indicate that the available newer NNRTIs which retain activity against some HIV-1 strains selected by other compounds of this class in vitro may have compromised clinical efficacy in some patients pretreated with NNRTI.


2005 ◽  
Vol 79 (16) ◽  
pp. 10247-10257 ◽  
Author(s):  
Johanna Wapling ◽  
Katie L. Moore ◽  
Secondo Sonza ◽  
Johnson Mak ◽  
Gilda Tachedjian

ABSTRACT The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document