scholarly journals The K1 Protein of Kaposi's Sarcoma-Associated Herpesvirus Augments Viral Lytic Replication

2016 ◽  
Vol 90 (17) ◽  
pp. 7657-7666 ◽  
Author(s):  
Zhigang Zhang ◽  
Wuguo Chen ◽  
Marcia K. Sanders ◽  
Kevin F. Brulois ◽  
Dirk P. Dittmer ◽  
...  

ABSTRACTThe K1 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is encoded by the first open reading frame (ORF) of the viral genome. To investigate the role of the K1 gene during the KSHV life cycle, we constructed a set of recombinant viruses that contained either wild-type (WT) K1, a deleted K1 ORF (KSHVΔK1), stop codons within the K1 ORF (KSHV-K15×STOP), or a revertant K1 virus (KSHV-K1REV). We report that the recombinant viruses KSHVΔK1 and KSHV-K15×STOPdisplayed significantly reduced lytic replication compared to WT KSHV and KSHV-K1REVupon reactivation from latency. Additionally, cells infected with the recombinant viruses KSHVΔK1 and KSHV-K15×STOPalso yielded smaller amounts of infectious progeny upon reactivation than did WT KSHV- and KSHV-K1REV-infected cells. Upon reactivation from latency, WT KSHV- and KSHV-K1REV-infected cells displayed activated Akt kinase, as evidenced by its phosphorylation, while cells infected with viruses deleted for K1 showed reduced phosphorylation and activation of Akt kinase. Overall, our results suggest that K1 plays an important role during the KSHV life cycle.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies, and KSHV K1 is a signaling protein that has been shown to be involved in cellular transformation and to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. In order to investigate the role of the K1 protein in the life cycle of KSHV, we constructed recombinant viruses that were deficient for K1. We found that K1 deletion viruses displayed reduced lytic replication compared to the WT virus and also yielded smaller numbers of infectious progeny. We report that K1 plays an important role in the life cycle of KSHV.

PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001423
Author(s):  
Peter Naniima ◽  
Eleonora Naimo ◽  
Sandra Koch ◽  
Ute Curth ◽  
Khaled R. Alkharsah ◽  
...  

Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its β-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 711 ◽  
Author(s):  
Matthew Butnaru ◽  
Marta Maria Gaglia

Kaposi’s sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi’s sarcoma and other aggressive AIDS-associated malignancies, encodes over 90 genes, most of which are expressed only during the lytic replication cycle. The role of many of the KSHV lytic proteins in the KSHV replication cycle remains unknown, and many proteins are annotated based on known functions of homologs in other herpesviruses. Here we investigate the role of the previously uncharacterized KSHV lytic protein ORF42, a presumed tegument protein. We find that ORF42 is dispensable for reactivation from latency but is required for efficient production of viral particles. Like its alpha- and beta-herpesviral homologs, ORF42 is a late protein that accumulates in the viral particles. However, unlike its homologs, ORF42 appears to be required for efficient expression of at least some viral proteins and may potentiate post-transcriptional stages of gene expression. These results demonstrate that ORF42 has an important role in KSHV replication and may contribute to shaping viral gene expression.


2015 ◽  
Vol 89 (9) ◽  
pp. 4918-4931 ◽  
Author(s):  
Joseph Gillen ◽  
Wenwei Li ◽  
Qiming Liang ◽  
Denis Avey ◽  
Jianjun Wu ◽  
...  

ABSTRACTThe ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication.


2006 ◽  
Vol 80 (20) ◽  
pp. 10073-10082 ◽  
Author(s):  
Laura A. Adang ◽  
Christopher H. Parsons ◽  
Dean H. Kedes

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus-8) is frequently tumorigenic in immunocompromised patients. The average intracellular viral copy number within infected cells, however, varies markedly by tumor type. Since the KSHV-encoded latency-associated nuclear antigen (LANA) tethers viral episomes to host heterochromatin and displays a punctate pattern by fluorescence microscopy, we investigated whether accurate quantification of individual LANA dots is predictive of intracellular viral genome load. Using a novel technology that integrates single-cell imaging with flow cytometry, we found that both the number and the summed immunofluorescence of individual LANA dots are directly proportional to the amount of intracellular viral DNA. Moreover, combining viral (immediate early lytic replication and transcription activator [RTA] and late lytic K8.1) and cellular (syndecan-1) staining with image-based flow cytometry, we were also able to rapidly and simultaneously distinguish among cells supporting latent, immediate early lytic, early lytic, late lytic, and a potential fourth “delayed late” category of lytic replication. Applying image-based flow cytometry to KSHV culture models, we found that de novo infection results in highly varied levels of intracellular viral load and that lytic induction of latently infected cells likewise leads to a heterogeneous population at various stages of reactivation. These findings additionally underscore the potential advantages of studying KSHV biology with high-throughput analysis of individual cells.


2016 ◽  
Vol 90 (19) ◽  
pp. 8822-8841 ◽  
Author(s):  
Arunava Roy ◽  
Dipanjan Dutta ◽  
Jawed Iqbal ◽  
Gina Pisano ◽  
Olsi Gjyshi ◽  
...  

ABSTRACTIFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation.IMPORTANCELike all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.


2021 ◽  
Author(s):  
Su-Kyung Kang ◽  
Yun Hee Kang ◽  
Seung-Min Yoo ◽  
Changhoon Park ◽  
Hong Seok Kim ◽  
...  

Multiple host proteins affect the gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) during latent and lytic replication. The high mobility group box 1 (HMGB1) serves as a highly conserved chromosomal protein inside the cell and a prototypical damage-associated molecular pattern molecule outside the cell. HMGB1 has been shown to play a pathogenic role in viral infectious diseases and to regulate the lytic replication of KSHV. However, its functional effects on the KSHV life cycle in KSHV-infected cells have not been fully elucidated. Here, we explored the role of the intracellular and extracellular HMGB1 in KSHV virion production by employing CRISPR/Cas9-mediated HMGB1 knockout in the KSHV-producing iSLK BAC16 cell line. Intracellular HMGB1 formed complexes with various proteins, and the abundance of HMGB1-interacting proteins changed during latent and lytic replication. Moreover, extracellular HMGB1 was found to enhance lytic replication by phosphorylating JNK. Of note, the expression of viral genes was attenuated during lytic replication in HMGB1- knockout iSLK BAC16 cells, with significantly decreased production of infectious virions compared to that in wild-type cells. Collectively, our results demonstrate that HMGB1 is an important cellular cofactor that affects the generation of infectious KSHV progeny during lytic replication. Author Summary The high mobility group box 1 protein ( HMGB1 ) has many intra- and extracellular biological functions with an intricate role in various diseases. In certain viral infections, HMGB1 affects the viral life cycle and pathogenesis. In this study, we explored the effects of HMGB1 knockout on the production of Kaposi’s sarcoma-associated herpesvirus (KSHV). HMGB1 knockout decreased virion production in KSHV-producing cells by decreasing the expression of viral genes. The processes by which HMGB1 affects KSHV production may occur inside or outside of infected cells. For instance, several cellular and viral proteins interacted with intracellular HMGB1 in a nucleosomal complex; whereas extracellular HMGB1 induced JNK phosphorylation, thus enhancing lytic replication. Our results suggest that both intracellular and extracellular HMGB1 are necessary for efficient KSHV replication. Thus, HMGB1 may represent an effective therapeutic target for the regulation of KSHV production.


2018 ◽  
Author(s):  
Matthew R Gardner ◽  
Britt A Glaunsinger

AbstractHerpesviral DNA packaging into nascent capsids requires multiple conserved viral proteins that coordinate genome encapsidation. Here, we investigated the role of the ORF68 protein of Kaposi’s sarcoma-associated herpesvirus (KSHV), a protein required for viral DNA encapsidation whose function remains largely unresolved across the herpesviridae. We found that KSHV ORF68 is expressed with early kinetics and localizes predominantly to viral replication compartments, although it is dispensable for viral DNA replication and gene expression. However, in agreement with its proposed role in viral DNA packaging, KSHV-infected cells lacking ORF68 failed to cleave viral DNA concatemers, accumulated exclusively immature B-capsids, and released no infectious progeny virions. ORF68 has no predicted domains aside from a series of putative zinc finger motifs. However,in vitrobiochemical analyses of purified ORF68 protein revealed that it robustly binds DNA and is associated with nuclease activity. These activities provide new insights into the role of KSHV ORF68 in viral genome encapsidation.ImportanceKaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma and several B-cell cancers, causing significant morbidity and mortality in immunocompromised individuals. A critical step in the production of infectious viral progeny is the packaging of the newly replicated viral DNA genome into the capsid, which involves coordination between at least seven herpesviral proteins. While the majority of these packaging factors have been well studied in related herpesviruses, the role of the KSHV ORF68 protein and its homologs remains unresolved. Here, using a KSHV mutant lacking ORF68, we confirm its requirement for viral DNA processing and packaging in infected cells. Furthermore, we show that the purified ORF68 protein directly binds DNA and is associated with a metal-dependent cleavage activity on double stranded DNAin vitro. These activities suggest a novel role for ORF68 in herpesviral genome processing and encapsidation.


2015 ◽  
Vol 89 (22) ◽  
pp. 11347-11355 ◽  
Author(s):  
Christine A. King ◽  
Xiaofan Li ◽  
Arturo Barbachano-Guerrero ◽  
Sumita Bhaduri-McIntosh

ABSTRACTLytic activation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency is a critical contributor to pathogenesis and progression of KSHV-mediated disease. Development of targeted treatment strategies and improvement of lytic-phase-directed oncolytic therapies, therefore, hinge on gaining a better understanding of latency-to-lytic-phase transition. A key observation in that regard, also common to other herpesviruses, is the partial permissiveness of latently infected cells to lytic-cycle-inducing agents. Here, we address the molecular basis of why only some KSHV-infected cells respond to lytic stimuli. Since cellular signal transducer and activator of transcription 3 (STAT3) is constitutively active in KSHV-associated cancers, KSHV activates STAT3, and STAT3 has been found to regulate lytic activation of Epstein-Barr virus (EBV)-infected cells, we asked if STAT3 contributes similarly to the life cycle of KSHV. We found that high levels of STAT3 correlate with the refractory state at the single-cell level under conditions of both spontaneous and induced lytic activation; importantly, STAT3 also regulates lytic susceptibility. Further, knockdown of STAT3 suppresses the cellular transcriptional corepressor Krüppel-associated box domain-associated protein 1 (KAP1; also known as TRIM28), and suppression of KAP1 activates lytic genes, including the viral lytic switch RTA, thereby linking STAT3 via KAP1 to regulation of the balance between lytic and latent cells. These findings, taken together with those from EBV-infected and, more recently, herpes simplex virus 1 (HSV-1)-infected cells, cement the contribution of host STAT3 to persistence of herpesviruses and simultaneously reveal an important lead to devise strategies to improve lytic-phase-directed therapies for herpesviruses.IMPORTANCELytic activation of the cancer-causing Kaposi's sarcoma-associated herpesvirus (KSHV) is vital to its life cycle and causation of disease. Like other herpesviruses, however, a substantial fraction of latently infected cells are resistant to lytic-phase-inducing stimuli. Investigating the molecular basis for this refractory state is essential for understanding how the virus persists and how it causes disease and to guide efforts to improve treatment of KSHV-mediated diseases. We found that, like two other herpesviruses, EBV and HSV-1, KSHV exploits the cellular transcription factor STAT3 to regulate the susceptibility of latently infected cells to lytic triggers. These findings highlight a common STAT3-centered strategy used by herpesviruses to maintain persistence in their hosts while also revealing a key molecule to pursue while devising methods to improve herpesvirus lytic-phase-directed therapies.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Matthew R. Gardner ◽  
Britt A. Glaunsinger

ABSTRACTHerpesviral DNA packaging into nascent capsids requires multiple conserved viral proteins that coordinate genome encapsidation. Here, we investigated the role of the ORF68 protein of Kaposi's sarcoma-associated herpesvirus (KSHV), a protein required for viral DNA encapsidation whose function remains largely unresolved across the herpesviridae. We found that KSHV ORF68 is expressed with early kinetics and localizes predominantly to viral replication compartments, although it is dispensable for viral DNA replication and gene expression. However, in agreement with its proposed role in viral DNA packaging, KSHV-infected cells lacking ORF68 failed to cleave viral DNA concatemers, accumulated exclusively immature B capsids, and released no infectious progeny virions. ORF68 has no predicted domains aside from a series of putative zinc finger motifs. However,in vitrobiochemical analyses of purified ORF68 protein revealed that it robustly binds DNA and is associated with nuclease activity. These activities provide new insights into the role of KSHV ORF68 in viral genome encapsidation.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma and several B-cell cancers, causing significant morbidity and mortality in immunocompromised individuals. A critical step in the production of infectious viral progeny is the packaging of the newly replicated viral DNA genome into the capsid, which involves coordination between at least seven herpesviral proteins. While the majority of these packaging factors have been well studied in related herpesviruses, the role of the KSHV ORF68 protein and its homologs remains unresolved. Here, using a KSHV mutant lacking ORF68, we confirm its requirement for viral DNA processing and packaging in infected cells. Furthermore, we show that the purified ORF68 protein directly binds DNA and is associated with a metal-dependent cleavage activity on double-stranded DNAin vitro. These activities suggest a novel role for ORF68 in herpesviral genome processing and encapsidation.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Antonio Gallo ◽  
Melanie Lampe ◽  
Thomas Günther ◽  
Wolfram Brune

ABSTRACT KS-Bcl-2 is a Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral Bcl-2 (vBcl-2) homolog which has apoptosis- and autophagy-inhibiting activity when expressed in transfected cells. However, little is known about its function during viral infection. As KS-Bcl-2 is expressed during the lytic replication cycle, we used constitutively lytic and inducibly lytic KSHV mutants to investigate the role of KS-Bcl-2 during the lytic cycle. We show that KSHV cannot complete the lytic replication cycle and produce infectious progeny in the absence of KS-Bcl-2, indicating that the protein is essential for KSHV replication. Replacement of the KS-Bcl-2 coding sequence, ORF16, by sequences encoding a potent cellular apoptosis and autophagy inhibitor, Bcl-XL, or the cytomegalovirus mitochondrial inhibitor of apoptosis, vMIA, did not rescue KSHV replication, suggesting that KS-Bcl-2 has a function that goes beyond apoptosis and autophagy inhibition. Strikingly, the vBcl-2 proteins of the related γ2-herpesviruses murine herpesvirus 68 and herpesvirus saimiri did not rescue the replication of a KS-Bcl-2 deletion mutant, but rhesus rhadinovirus (RRV) vBcl-2 did. Deletion of ORF16 from the RRV genome abrogated viral replication, but its replacement by KSHV ORF16 rescued RRV replication, indicating that the essential vBcl-2 function is conserved between these two primate rhadinoviruses. We further show that the KSHV and RRV Bcl-2 homologs localize to the mitochondria and nuclei of infected cells. Deletion of 17 amino acids from the N terminus of KS-Bcl-2 abrogates nuclear localization and KSHV replication, suggesting that KS-Bcl-2 might execute its essential function in the nuclei of infected cells. IMPORTANCE Several viruses express proteins homologous to cellular Bcl-2. Viral Bcl-2 proteins have functions similar to those of cellular Bcl-2: they can inhibit apoptosis, a form of programmed cell death, and autophagy, a self-degradative process for the disposal of dysfunctional or unwanted components. This study shows that the vBcl-2 proteins of KSHV and RRV differ from other vBcl-2 proteins in that they are essential for viral replication. The essential function is separate from the apoptosis- and autophagy-inhibiting activity but correlates with an unusual localization within the cell nucleus, suggesting that these proteins exert a novel function in the nucleus.


Sign in / Sign up

Export Citation Format

Share Document