In vitro susceptibility of T lymphocytes from chimpanzees (Pan troglodytes) to human herpesvirus 6 (HHV-6): a potential animal model to study the interaction between HHV-6 and human immunodeficiency virus type 1 in vivo.

1990 ◽  
Vol 64 (6) ◽  
pp. 2751-2758 ◽  
Author(s):  
P Lusso ◽  
P D Markham ◽  
S E DeRocco ◽  
R C Gallo
2000 ◽  
Vol 74 (18) ◽  
pp. 8726-8731 ◽  
Author(s):  
Alberto Gobbi ◽  
Cheryl A. Stoddart ◽  
Giuseppe Locatelli ◽  
Fabio Santoro ◽  
Christopher Bare ◽  
...  

ABSTRACT Human herpesvirus 6 (HHV-6) has been proposed as a potential cofactor in the progression of human immunodeficiency virus type 1 (HIV-1) disease. We used the SCID-hu Thy/Liv mouse model to evaluate the in vivo interactions between HHV-6 and HIV-1. Our results demonstrate that HHV-6 and HIV-1 can simultaneously replicate in the human thymus in vivo. In this model, however, the presence of one virus appears not to modify the replication or cytopathicity of the other.


1993 ◽  
Vol 178 (2) ◽  
pp. 743-747 ◽  
Author(s):  
L J Montaner ◽  
A G Doyle ◽  
M Collin ◽  
G Herbein ◽  
P Illei ◽  
...  

The mechanisms by which cellular immunity maintains the asymptomatic state after human immunodeficiency virus type 1 (HIV-1) infection are poorly understood. CD4+ T lymphocytes play a complex role in regulating anti-HIV effector pathways, including activation of macrophages, which are themselves implicated in clinical latency and pathogenesis of symptomatic acquired immune deficiency syndrome. We have found that a newly identified T helper type 2 lymphokine, interleukin 13 (IL-13), inhibits HIV-1ADA and Ba-L replication in primary tissue culture-derived macrophages but not in peripheral blood lymphocytes. Viral production in cells was measured by viral protein (p24) and reverse transcriptase levels, while entry was assessed by proviral DNA analysis at timed intervals after infection. Inhibition by IL-13 was dose and time dependent and not mediated through altered viral entry, reverse transcription, or viral release. IL-13 is therefore a candidate cytokine for the suppression of HIV infection within monocytes and macrophages in vivo.


2001 ◽  
Vol 82 (11) ◽  
pp. 2719-2733 ◽  
Author(s):  
Martine Bardy ◽  
Bernard Gay ◽  
Stéphanie Pébernard ◽  
Nathalie Chazal ◽  
Marianne Courcoul ◽  
...  

Interactions of human immunodeficiency virus type 1 (HIV-1) Vif protein with various forms of Gag and Gag–Pol precursors expressed in insect cells were investigated in vivo and in vitro by co-encapsidation, co-precipitation and viral protease (PR)-mediated Gag processing assays. Addressing of Gag to the plasma membrane, its budding as extracellular virus-like particles (VLP) and the presence of the p6 domain were apparently not required for Vif encapsidation, as non-N-myristoylated Δp6-Gag and Vif proteins were co-encapsidated into intracellular VLP. Encapsidation of Vif occurred at significantly higher copy numbers in extracellular VLP formed from N-myristoylated, budding-competent Gag–Pol precursors harbouring an inactive PR domain or in chimaeric VLP composed of Gag and Gag–Pol precursors compared with the Vif content of Pr55Gag VLP. Vif encapsidation efficiency did not seem to correlate directly with VLP morphology, since these chimaeric VLP were comparable in size and shape to Pr55Gag VLP. Vif apparently inhibited PR-mediated Pr55Gag processing in vitro, with preferential protection of cleavage sites at the MA–CA and CA–NC junctions. Vif was resistant to PR action in vitro under conditions that allowed full Gag processing, and no direct interaction between Vif and PR was detected in vivo or in vitro. This suggested that inhibition by Vif of PR-mediated Gag processing resulted from interaction of Vif with the Gag substrate and not with the enzyme. Likewise, the higher efficiency of Vif encapsidation by Gag–Pol precursor compared with Pr55Gag was probably not mediated by direct binding of Vif to the Gag–Pol-embedded PR domain, but more likely resulted from a particular conformation of the Gag structural domains of the Gag–Pol precursor.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4737-4745 ◽  
Author(s):  
G Furlini ◽  
M Vignoli ◽  
E Ramazzotti ◽  
MC Re ◽  
G Visani ◽  
...  

In human immunodeficiency virus type-1 (HIV-1) infected individuals, CD34+ hematopoietic stem/progenitor cells are profoundly impaired in their proliferation/differentiation capacities. The bulk of the available experimental evidence seems to indicate that hematopoietic progenitors are not susceptible to HIV-1 infection and their defects seem rather the consequence of direct or indirect negative influences of HIV-1-specific soluble proteins released by productively infected accessory cells. We have now shown that in the presence of a concurrent human herpesvirus-6 infection, two hematopoietic (TF-1 [erythromyeloid] and KG-1 [lymphomyeloid]) progenitor cell lines and human CD34+ hematopoietic progenitors isolated from the bone marrow of normal donors, became susceptible to HIV-1 infection and permissive to HIV-1 replication, although with a limited virus yield. These results suggest a further possible mechanism leading to hematopoietic derangement in HIV-1-infected subjects and may help to clarify the controversial issue of the susceptibility of human hematopoietic progenitors to HIV-1 infection.


2001 ◽  
Vol 75 (8) ◽  
pp. 3916-3924 ◽  
Author(s):  
Karen M. Duus ◽  
Eric D. Miller ◽  
Jonathan A. Smith ◽  
Grigoriy I. Kovalev ◽  
Lishan Su

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46–52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the envgene, without an associated pathogenic phenotype, and (ii)nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1nef-mediated pathogenesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document