scholarly journals Efficient excision of the upstream large intron from P4-generated pre-mRNA of the parvovirus minute virus of mice requires at least one donor and the 3' splice site of the small downstream intron.

1995 ◽  
Vol 69 (10) ◽  
pp. 6170-6179 ◽  
Author(s):  
Q Zhao ◽  
A Gersappe ◽  
D J Pintel
2005 ◽  
Vol 79 (19) ◽  
pp. 12375-12381 ◽  
Author(s):  
Eun-Young Choi ◽  
Ann E. Newman ◽  
Lisa Burger ◽  
David Pintel

ABSTRACT Following transfection of murine fibroblasts, the lymphotropic strain of minute virus of mice (MVMi) does not efficiently produce progeny single-strand DNA (ssDNA). However, changing a single nucleotide in the MVMi 3′ splice site to that found in the fibrotropic strain MVMp enabled full DNA replication and production of ssDNA. This change enhanced excision of the large intron and the production of NS2, likely by improving interaction, in fibroblasts with the branch point-binding U2 snRNA. One function of NS2 involves interaction with the nuclear export protein Crm1. The defect in production of MVMi ssDNA in fibroblasts can also be overcome by introducing a mutation in MVMi NS2 that enhances its interaction with Crm1. Although MVMi contains a 3′ splice site that performs poorly in fibroblasts, MVMi generated at least as much R2 and NS2 in murine lymphocytes as did MVMp in fibroblasts. Therefore, it appears that MVMp has acquired a mutation that improves the excision of the large intron, as it adapted to fibroblasts to accommodate the need for NS2 for replication in these cells, and that the ratio of NS1 to NS2 may play a larger role in the host range of MVM than previously appreciated.


1999 ◽  
Vol 19 (1) ◽  
pp. 364-375 ◽  
Author(s):  
Anand Gersappe ◽  
David J. Pintel

ABSTRACT The alternatively spliced 290-nucleotide NS2-specific exon of the parvovirus minute virus of mice (MVM), which is flanked by a large intron upstream and a small intron downstream, constitutively appears both in the R1 mRNA as part of a large 5′-terminal exon (where it is translated in open reading frame 3 [ORF3]), and in the R2 mRNA as an internal exon (where it is translated in ORF2). We have identified a novel bipartite exon enhancer element, composed of CA-rich and purine-rich elements within the 5′ and 3′ regions of the exon, respectively, that is required to include NS2-specific exon sequences in mature spliced mRNA in vivo. These two compositionally different enhancer elements are somewhat redundant in function: either element alone can at least partially support exon inclusion. They are also interchangeable: either element can function at either position. Either a strong 3′ splice site upstream (i.e., the exon 5′ terminus) or a strong 5′ splice site downstream (i.e., the exon 3′ terminus) is sufficient to prevent skipping of the NS2-specific exon, and a functional upstream 3′ splice site is required for inclusion of the NS2-specific exon as an internal exon into the mature, doubly spliced R2 mRNA. The bipartite enhancer functionally strengthens these termini: the requirement for both the CA-rich and purine-rich elements can be overcome by improvements to the polypyrimidine tract of the upstream intron 3′ splice site, and the purine-rich element also supports exon inclusion mediated through the downstream 5′ splice sites. In summary, a suboptimal large-intron polypyrimidine tract, sequences within the downstream small intron, and a novel bipartite exonic enhancer operate together to yield the balanced levels of R1 and R2 observed in vivo. We suggest that the unusual bipartite exonic enhancer functions to mediate proper levels of inclusion of the NS2-specific exon in both singly spliced R1 and doubly spliced R2.


2009 ◽  
Vol 83 (12) ◽  
pp. 6306-6311 ◽  
Author(s):  
Eun-Young Choi ◽  
David Pintel

ABSTRACT The essential proteins NS1 and NS2 of minute virus of mice are encoded by mRNAs R1 and R2, respectively. R2 is derived from R1 by excision of a large intron and thus splicing governs the relative ratios of NS1 and NS2. Excision of the large intron utilizes a nonconsensus 5′ donor site. We identified a U-rich and A-rich intronic sequence immediately downstream of the nonconsensus 5′ donor site that functions as an intronic splicing enhancer (ISE) required for efficient large-intron excision. The ISE binds the cellular RNA-processing proteins TIA-1 and TIAR, which enhance usage of the nonconsensus donor.


1986 ◽  
Vol 59 (3) ◽  
pp. 564-573 ◽  
Author(s):  
C V Jongeneel ◽  
R Sahli ◽  
G K McMaster ◽  
B Hirt

2021 ◽  
Vol 19 (2) ◽  
pp. 119-125
Author(s):  
E.V. Mikhailova ◽  
◽  
T.K. Chudakova ◽  
D.Yu. Levin ◽  
A.V. Romanovskaya ◽  
...  

Parvovirus (PV) is a widespread infection, despite the fact that this pathogen was discovered only recently. The therapeutic effect of PV, in particular its oncolytic activity, is being actively studied now. Notably, PVs causing infections in animals, such as rat PV H-1, caninae PV, and rodent protoparvovirus (minute virus of mice) suppress oncogenesis in these animals. There is an ex vivo evidence of rat glioblastoma and gliosarcoma sensitivity to PV. The affinity of PV B19 to P-antigen located primarily on the membranes of erythroid cells is crucial for the disease pathogenesis. The teratogenic effect of PV B19 is associated with its ability to infect placental cells (P-antigen is present on the cells of chorionic villi and surface of the trophoblast). PV infection can be acquired or congenital, typical or atypical. The outcome of intrauterine infection with PV B19 largely depends on the gestation age when the infection occurred. Women infected during the second trimester are at higher risk of vertical transmission and severe intrauterine pathology with a poor outcome than those infected during the third trimester. Constant contact with young children significantly increases the risk of PV B19 infection among pregnant women with no immunity to this virus. Serum is the most convenient biomaterial for detecting both PV DNA and virus-specific antibodies. One test for anti-PV IgG using enzyme-linked immunosorbent assay is sufficient to determine the immune status of a patient. Polymerase chain reaction with amniotic fluid is used to diagnose intrauterine infection with PV B19. Blood components and products should be checked for PV B19. High frequency of PV B19 detection in the blood of donors necessitates the development of special measures aimed at prevention of virus transmission. Key words: pregnant women, children, parvovirus B19, parvovirus infection


Sign in / Sign up

Export Citation Format

Share Document