parvovirus b19
Recently Published Documents


TOTAL DOCUMENTS

3358
(FIVE YEARS 441)

H-INDEX

82
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Anne K. Muehlig ◽  
Sydney Gies ◽  
Tobias B. Huber ◽  
Fabian Braun

Collapsing glomerulopathy represents a special variant of the proteinuric kidney disease focal segmental glomerulosclerosis (FSGS). Histologically, the collapsing form of FSGS (cFSGS) is characterized by segmental or global condensation and obliteration of glomerular capillaries, the appearance of hyperplastic and hypertrophic podocytes and severe tubulointerstitial damage. Clinically, cFSGS patients present with acute kidney injury, nephrotic-range proteinuria and are at a high risk of rapid progression to irreversible kidney failure. cFSGS can be attributed to numerous etiologies, namely, viral infections like HIV, cytomegalovirus, Epstein–Barr-Virus, and parvovirus B19 and also drugs and severe ischemia. Risk variants of the APOL1 gene, predominantly found in people of African descent, increase the risk of developing cFSGS. Patients infected with the new Corona-Virus SARS-CoV-2 display an increased rate of acute kidney injury (AKI) in severe cases of COVID-19. Besides hemodynamic instability, cytokine mediated injury and direct viral entry and infection of renal epithelial cells contributing to AKI, there are emerging reports of cFSGS associated with SARS-CoV-2 infection in patients of mainly African ethnicity. The pathogenesis of cFSGS is proposed to be linked with direct viral infection of podocytes, as described for HIV-associated glomerulopathy. Nevertheless, there is growing evidence that the systemic inflammatory cascade, activated in acute viral infections like COVID-19, is a major contributor to the impairment of basic cellular functions in podocytes. This mini review will summarize the current knowledge on cFSGS associated with viral infections with a special focus on the influence of systemic immune responses and potential mechanisms propagating the development of cFSGS.


2022 ◽  
Vol 2022 ◽  
pp. 1-3
Author(s):  
Taro Fukuta ◽  
Yoshihiko Kawano ◽  
Maiko Ikeda ◽  
Jun-ichi Kawada ◽  
Yoshinori Ito ◽  
...  

Human parvovirus B19 (PVB19) infection causes neurological manifestations, including encephalitis, meningitis, and neuropathy, but facial nerve palsy is rare. Moreover, no case of facial nerve palsy related to PVB19 infection that was diagnosed by PCR and serology has been reported. A 19-month-old boy without the medical history developed facial nerve palsy and was treated with prednisolone and valacyclovir. On the 19th day, erythema appeared on his body, and the PVB19-specific IgM and PVB19 DNA were detected in the serum, leading to the diagnosis of infectious erythema associated with PVB19 infection. This case indicates that PVB19 may be one of the causative agents of facial nerve palsy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
My V. T. Phan ◽  
Charles N. Agoti ◽  
Patrick K. Munywoki ◽  
Grieven P. Otieno ◽  
Mwanajuma Ngama ◽  
...  

AbstractPneumonia remains a major cause of mortality and morbidity. Most molecular diagnoses of viruses rely on polymerase chain reaction (PCR) assays that however can fail due to primer mismatch. We investigated the performance of routine virus diagnostics in Kilifi, Kenya, using random-primed viral next generation sequencing (viral NGS) on respiratory samples which tested negative for the common viral respiratory pathogens by a local standard diagnostic panel. Among 95 hospitalised pneumonia patients and 95 household-cohort individuals, analysis of viral NGS identified at least one respiratory-associated virus in 35 (37%) and 23 (24%) samples, respectively. The majority (66%; 42/64) belonged to the Picornaviridae family. The NGS data analysis identified a number of viruses that were missed by the diagnostic panel (rhinovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus), and these failures could be attributed to PCR primer/probe binding site mismatches. Unexpected viruses identified included parvovirus B19, enterovirus D68, coxsackievirus A16 and A24 and rubella virus. The regular application of such viral NGS could help evaluate assay performance, identify molecular causes of missed diagnoses and reveal gaps in the respiratory virus set used for local screening assays. The results can provide actionable information to improve the local pneumonia diagnostics and reveal locally important viral pathogens.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Alessandro Reggiani ◽  
Andrea Avati ◽  
Francesca Valenti ◽  
Erika Fasano ◽  
Gloria Bua ◽  
...  

Parvovirus B19 (B19V) is a human pathogenic virus of clinical relevance, characterized by a selective tropism for erythroid progenitor cells in bone marrow. Relevant information on viral characteristics and lifecycle can be obtained from experiments involving engineered genetic systems in appropriate in vitro cellular models. Previously, a B19V genome of defined consensus sequence was designed, synthesized and cloned in a complete and functional form, able to replicate and produce infectious viral particles in a producer/amplifier cell system. Based on such a system, we have now designed and produced a derived B19V minigenome, reduced to a replicon unit. The genome terminal regions were maintained in a form able to sustain viral replication, while the internal region was clipped to include only the left-side genetic set, containing the coding sequence for the functional NS1 protein. Following transfection in UT7/EpoS1 cells, this minigenome still proved competent for replication, transcription and production of NS1 protein. Further, the B19V minigenome was able to complement B19-derived, NS1-defective genomes, restoring their ability to express viral capsid proteins. The B19V genome was thus engineered to yield a two-component system, with complementing functions, providing a valuable tool for studying viral expression and genetics, suitable to further engineering for purposes of translational research.


2022 ◽  
Author(s):  
Daiva Bironaitė ◽  
Ieva Kažukauskienė ◽  
Julius Bogomolovas ◽  
Dainius Daunoravičius ◽  
Artūras Jakubauskas ◽  
...  

2021 ◽  
Author(s):  
Mai H. S. Mohammad ◽  
Mohamed Fawzy ◽  
Abeer G. E. Rabie ◽  
Fadia M. Attia ◽  
Maha M. Anani

Medicine ◽  
2021 ◽  
Vol 100 (51) ◽  
pp. e28387
Author(s):  
Bijun Xu ◽  
Weimin Zhang ◽  
Ximing Qian ◽  
Shiqiang Wang ◽  
Fan He

2021 ◽  
Author(s):  
Nancy Horton ◽  
Jonathan L Sanchez ◽  
Niloofar Ghadirian

Two new structures of the N-terminal domain of the main replication protein, NS1, of Human Parvovirus B19 (B19V) are presented. This domain (NS1-nuc) plays an important role in the “rolling hairpin” replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e. nicking) single-stranded DNA at a nearby site known as the trs. One structure of NS1-nuc is solved to 2.4 Å and shows the positions of two bound phosphate ions. A second structure shows the position of a single divalent cation in the DNA nicking active site. The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain, however shown here at significantly higher resolution. Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented which predict residues important for DNA cleavage and for sequence specific recognition at the viral origin of replication.


Sign in / Sign up

Export Citation Format

Share Document