scholarly journals Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival.

1997 ◽  
Vol 71 (1) ◽  
pp. 284-290 ◽  
Author(s):  
A Watson ◽  
J Ranchalis ◽  
B Travis ◽  
J McClure ◽  
W Sutton ◽  
...  
2003 ◽  
Vol 77 (2) ◽  
pp. 882-890 ◽  
Author(s):  
V. Novitsky ◽  
P. Gilbert ◽  
T. Peter ◽  
M. F. McLane ◽  
S. Gaolekwe ◽  
...  

ABSTRACT Virus-specific T-cell immune responses are important in restraint of human immunodeficiency virus type 1 (HIV-1) replication and control of disease. Plasma viral load is a key determinant of disease progression and infectiousness in HIV infection. Although HIV-1 subtype C (HIV-1C) is the predominant virus in the AIDS epidemic worldwide, the relationship between HIV-1C-specific T-cell immune responses and plasma viral load has not been elucidated. In the present study we address (i) the association between the level of plasma viral load and virus-specific immune responses to different HIV-1C proteins and their subregions and (ii) the specifics of correlation between plasma viral load and T-cell responses within the major histocompatibility complex (MHC) class I HLA supertypes. Virus-specific immune responses in the natural course of HIV-1C infection were analyzed in the gamma interferon (IFN-γ)-enzyme-linked immunospot assay by using synthetic overlapping peptides corresponding to the HIV-1C consensus sequence. For Gag p24, a correlation was seen between better T-cell responses and lower plasma viral load. For Nef, an opposite trend was observed where a higher T-cell response was more likely to be associated with a higher viral load. At the level of the HLA supertypes, a lower viral load was associated with higher T-cell responses to Gag p24 within the HLA A2, A24, B27, and B58 supertypes, in contrast to the absence of such a correlation within the HLA B44 supertype. The present study demonstrated differential correlations (or trends to correlation) in various HIV-1C proteins, suggesting (i) an important role of the HIV-1C Gag p24-specific immune responses in control of viremia and (ii) more rapid viral escape from immune responses to Nef with no restraint of plasma viral load. Correlations between the level of IFN-γ-secreting T cells and viral load within the MHC class I HLA supertypes should be considered in HIV vaccine design and efficacy trials.


2014 ◽  
Vol 95 (10) ◽  
pp. 2273-2284 ◽  
Author(s):  
Sieghart Sopper ◽  
Kerstin Mätz-Rensing ◽  
Thorsten Mühl ◽  
Jonathan Heeney ◽  
Christiane Stahl-Hennig ◽  
...  

Infection of macaques with live attenuated simian immunodeficiency virus (SIV) usually results in long-lasting efficient protection against infection with pathogenic immunodeficiency viruses. However, attenuation by deletion of regulatory genes such as nef is not complete, leading to a high viral load and fatal disease in some animals. To characterize immunological parameters and polymorphic host factors, we studied 17 rhesus macaques infected with attenuated SIVmac239ΔNU. Eight animals were able to control viral replication, whereas the remaining animals (non-controllers) displayed variable set-point viral loads. Peak viral load at 2 weeks post-infection (p.i.) correlated significantly with set-point viral load (P<0.0001). CD4+ T-cell frequencies differed significantly soon after infection between controllers and non-controllers. Abnormal B-cell activation previously ascribed to Nef function could already be observed in non-controllers 8 weeks after infection despite the absence of Nef. Two non-controllers developed an AIDS-like disease within 102 weeks p.i. Virus from these animals transmitted to naïve animals replicated at low levels and the recipients did not develop immunodeficiency. This suggested that host factors determined differential viral load and subsequent disease course. Known Mhc class I alleles associated with disease progression in SIV WT infection only marginally influenced the viral load in Δnef-infected animals. Protection from SIVmac251 was associated with homozygosity for MHC class II in conjunction with a TLR7 polymorphism and showed a trend with initial viral replication. We speculated that host factors whose effects were usually masked by Nef were responsible for the different disease courses in individual animals upon infection with nef-deleted viruses.


2000 ◽  
Vol 74 (20) ◽  
pp. 9388-9395 ◽  
Author(s):  
Simoy Goldstein ◽  
Charles R. Brown ◽  
Houman Dehghani ◽  
Jeffrey D. Lifson ◽  
Vanessa M. Hirsch

ABSTRACT Previous studies with simian immunodeficiency virus (SIV) infection of rhesus macaques suggested that the intrinsic susceptibility of peripheral blood mononuclear cells (PBMC) to infection with SIV in vitro was predictive of relative viremia after SIV challenge. The present study was conducted to evaluate this parameter in a well-characterized cohort of six rhesus macaques selected for marked differences in susceptibility to SIV infection in vitro. Rank order relative susceptibility of PBMC to SIVsmE543-3-infection in vitro was maintained over a 1-year period of evaluation. Differential susceptibility of different donors was maintained in CD8+T-cell-depleted PBMC, macrophages, and CD4+ T-cell lines derived by transformation of PBMC with herpesvirus saimiri, suggesting that this phenomenon is an intrinsic property of CD4+target cells. Following intravenous infection of these macaques with SIVsmE543-3, we observed a wide range in plasma viremia which followed the same rank order as the relative susceptibility established by in vitro studies. A significant correlation was observed between plasma viremia at 2 and 8 weeks postinoculation and in vitro susceptibility (P < 0.05). The observation that the two most susceptible macaques were seropositive for simian T-lymphotropic virus type 1 may suggests a role for this viral infection in enhancing susceptibility to SIV infection in vitro and in vivo. In summary, intrinsic susceptibility of CD4+ target cells appears to be an important factor influencing early virus replication patterns in vivo that should be considered in the design and interpretation of vaccine studies using the SIV/macaque model.


Virology ◽  
2000 ◽  
Vol 270 (1) ◽  
pp. 237-249 ◽  
Author(s):  
James M. Binley ◽  
Brian Clas ◽  
Agegnehu Gettie ◽  
Mika Vesanen ◽  
David C. Montefiori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document