scholarly journals Role of the β-Chemokine Receptors CCR3 and CCR5 in Human Immunodeficiency Virus Type 1 Infection of Monocytes and Microglia

1998 ◽  
Vol 72 (4) ◽  
pp. 3351-3361 ◽  
Author(s):  
Anuja Ghorpade ◽  
Meng Qi Xia ◽  
Bradley T. Hyman ◽  
Yuri Persidsky ◽  
Adeline Nukuna ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection in mononuclear phagocyte lineage cells (monocytes, macrophages, and microglia) is a critical component in the pathogenesis of viral infection. Viral replication in macrophages serves as a reservoir, a site of dissemination, and an instigator for neurological sequelae during HIV-1 disease. Recent studies demonstrated that chemokine receptors are necessary coreceptors for HIV-1 entry which determine viral tropism for different cell types. To investigate the relative contribution of the β-chemokine receptors CCR3 and CCR5 to viral infection of mononuclear phagocytes we utilized a panel of macrophage-tropic HIV-1 strains (from blood and brain tissue) to infect highly purified populations of monocytes and microglia. Antibodies to CD4 (OKT4A) abrogated HIV-1 infection. The β chemokines and antibodies to CCR3 failed to affect viral infection of both macrophage cell types. Antibodies to CCR5 (3A9) prevented monocyte infection but only slowed HIV replication in microglia. Thus, CCR5, not CCR3, is an essential receptor for HIV-1 infection of monocytes. Microglia express both CCR5 and CCR3, but antibodies to them fail to inhibit viral entry, suggesting the presence of other chemokine receptors for infection of these cells. These studies demonstrate the importance of mononuclear phagocyte heterogeneity in establishing HIV-1 infection and persistence.

2001 ◽  
Vol 75 (14) ◽  
pp. 6572-6583 ◽  
Author(s):  
Anuja Ghorpade ◽  
Raisa Persidskaia ◽  
Radhika Suryadevara ◽  
Myhanh Che ◽  
Xiao Juan Liu ◽  
...  

ABSTRACT The pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is mediated mainly by mononuclear phagocyte (MP) secretory products and their interactions with neural cells. Viral infection and MP immune activation may affect leukocyte entry into the brain. One factor that influences central nervous system (CNS) monocyte migration is matrix metalloproteinases (MMPs). In the CNS, MMPs are synthesized by resident glial cells and affect the integrity of the neuropil extracellular matrix (ECM). To ascertain how MMPs influence HAD pathogenesis, we studied their secretion following MP differentiation, viral infection, and cellular activation. HIV-1-infected and/or immune-activated monocyte-derived macrophages (MDM) and human fetal microglia were examined for production of MMP-1, -2, -3, and -9. MMP expression increased significantly with MP differentiation. Microglia secreted high levels of MMPs de novo that were further elevated following CD40 ligand-mediated cell activation. Surprisingly, HIV-1 infection of MDM led to the down-regulation of MMP-9. In encephalitic brain tissue, MMPs were expressed within perivascular and parenchymal MP, multinucleated giant cells, and microglial nodules. These data suggest that MMP production in MP is dependent on cell type, differentiation, activation, and/or viral infection. Regulation of MMP expression by these factors may contribute to neuropil ECM degradation and leukocyte migration during HAD.


2000 ◽  
Vol 74 (9) ◽  
pp. 4404-4413 ◽  
Author(s):  
Donald J. Chabot ◽  
Hong Chen ◽  
Dimiter S. Dimitrov ◽  
Christopher C. Broder

ABSTRACT The chemokine receptors CXCR4 and CCR5 are the principal coreceptors for infection of X4 and R5 human immunodeficiency virus type 1 (HIV-1) isolates, respectively. Here we report on the unexpected observation that the removal of the N-linked glycosylation sites in CXCR4 potentially allows the protein to serve as a universal coreceptor for both X4 and R5 laboratory-adapted and primary HIV-1 strains. We hypothesize that this alteration unmasks existing common extracellular structures reflecting a conserved three-dimensional similarity of important elements of CXCR4 and CCR5 that are involved in HIV envelope glycoprotein (Env) interaction. These results may have far-reaching implications for the differential recognition of cell type-dependent glycosylated CXCR4 by HIV-1 isolates and their evolution in vivo. They also suggest a possible explanation for the various observations of restricted virus entry in some cell types and further our understanding of the framework of elements that represent the Env-coreceptor contact sites.


2003 ◽  
Vol 77 (17) ◽  
pp. 9295-9304 ◽  
Author(s):  
Caroline Goujon ◽  
Loraine Jarrosson-Wuilleme ◽  
Jeanine Bernaud ◽  
Dominique Rigal ◽  
Jean-Luc Darlix ◽  
...  

ABSTRACT Heterologous lentiviral vectors (LVs) represent a way to address safety concerns in the field of gene therapy by decreasing the possibility of genetic recombination between vector and packaging constructs and the generation of replication-competent viruses. Using described LVs based on human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus MAC251 (SIVMAC251), we asked whether heterologous virion particles in which trans-acting factors belonged to HIV-1 and cis elements belonged to SIVMAC251 (HIV-siv) would behave as parental homologous vectors in all cell types. To our surprise, we found that although the heterologous HIV-siv vector was as infectious as its homologous counterpart in most human cells, it was defective in the transduction of dendritic cells (DCs) and, to a lesser extent, macrophages. In DCs, the main postentry defect was observed in the formation of two-long-terminal-repeat circles, despite the fact that full-length proviral DNA was being synthesized and was associated with the nucleus. Taken together, our data suggest that heterologous HIV-siv vectors display a cell-dependent infectivity defect, most probably at a post-nuclear entry migration step. As homologous HIV and SIV vectors do transduce DCs, we believe that these results underscore the importance of a conserved interaction between cis elements and trans-acting viral factors that is lost or suboptimal in heterologous vectors and essential only in the transduction of certain cell types. For gene therapy purposes, these findings indicate that the cellular tropism of LVs can be modulated not only through the use of distinct envelope proteins or tissue-specific promoters but also through the specific combinatorial use of packaging and transfer vector constructs.


1998 ◽  
Vol 72 (1) ◽  
pp. 830-836 ◽  
Author(s):  
Hassan M. Naif ◽  
Shan Li ◽  
Mohammed Alali ◽  
Andrew Sloane ◽  
Lijun Wu ◽  
...  

ABSTRACT The chemokine receptor CCR5 and to a lesser extent CCR3 and CCR2b have been shown to serve as coreceptors for human immunodeficiency virus type 1 (HIV-1) entry into blood- or tissue-derived macrophages. Therefore, we examined the expression of the chemokine receptors CCR1, CCR2b, CCR3, CCR5, and CXCR4 as RNAs or as membrane-expressed antigens in monocytes maturing into macrophages and correlated these results with the susceptibility of macrophages to HIV-1 infection, as measured by their concentrations of extracellular p24 antigen and levels of intracellular HIV DNA by quantitative PCR. There was little change in levels of CCR1, CCR2b, and CCR5 RNAs. CCR3 RNA and surface antigen were undetectable throughout maturation of adherent monocytes over 10 days. CXCR4 RNA and membrane antigen were strongly expressed in newly adherent monocytes, but their levels declined at day 7. The amounts of CCR5 RNA remained stable, but the amounts of CCR5 antigen increased from undetectable to peak levels at day 7 and then declined slightly at day 10. Levels of susceptibility to laboratory (HIV-1BaL) and clinical strains of HIV-1 showed parallel kinetics, peaking at day 7 and then decreasing at days 10 to 14. The concordance of levels of HIV DNA and p24 antigen suggested that the changes in susceptibility with monocyte maturation were at or immediately after entry and correlated well with CCR5 expression and inversely with CXCR4 expression.


2000 ◽  
Vol 74 (23) ◽  
pp. 11008-11016 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Lisa Cavacini ◽  
Marshall Posner ◽  
James Robinson ◽  
...  

ABSTRACT We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.


1998 ◽  
Vol 72 (1) ◽  
pp. 772-777 ◽  
Author(s):  
Yanjie Yi ◽  
Shalini Rana ◽  
Julie D. Turner ◽  
Nathan Gaddis ◽  
Ronald G. Collman

ABSTRACT Primary macrophages are infected by macrophage (M)-tropic but not T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, and CCR5 and CXCR-4 are the principal cofactors utilized for CD4-mediated entry by M-tropic and T-tropic isolates, respectively. Macrophages from individuals homozygous for an inactivating mutation of CCR5 are resistant to prototype M-tropic strains that depend on CCR5 but are permissive for a dual-tropic isolate, 89.6, that can use both CCR5 and CXCR-4, as well as CCR2b, CCR3, and CCR8. Here we show that 89.6 entry into CCR5-deficient macrophages is blocked by an anti-CXCR-4 antibody and by the CXCR-4-specific chemokine SDF but not by the ligands to CCR2b or CCR3. Reverse transcription-PCR demonstrated expression of CXCR-4 but not CCR3 or CCR8 in macrophages, while CCR2b was variable. Macrophage surface expression of CXCR-4 was confirmed by immunofluorescence staining and flow cytometry. Thus, CXCR-4 is expressed by primary macrophages and functions as a cofactor for entry by dual-tropic but not T-tropic HIV-1 isolates, and macrophage resistance to T-tropic strains does not result from a lack of the T-tropic entry cofactor CXCR-4. Since CXCR-4 on macrophages can be used by some but not other isolates, these results indicate that HIV-1 strains differ in how they utilize chemokine receptors as cofactors for entry and that the ability of a chemokine receptor to mediate HIV-1 entry differs, depending on the cell type in which it is expressed.


1998 ◽  
Vol 72 (9) ◽  
pp. 7450-7458 ◽  
Author(s):  
Benhur Lee ◽  
Benjamin J. Doranz ◽  
Shalini Rana ◽  
Yanji Yi ◽  
Mario Mellado ◽  
...  

ABSTRACT The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism inCCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor activities, and their effects on the expression and receptor activities of the major HIV-1 coreceptors. CCR2b and CCR2b-V64I were expressed at similar levels, and neither molecule affected the expression or coreceptor activity of CCR3, CCR5, or CXCR4 in cotransfected cell lines. Peripheral blood mononuclear cells (PBMCs) from CCR2-V64I heterozygotes had normal levels of CCR2b and CCR5 but slightly reduced levels of CXCR4. CCR2b and CCR2b-V64I functioned equally well as HIV-1 coreceptors, and CCR2-V64I PBMCs were permissive for HIV-1 infection regardless of viral tropism. The MCP-1-induced calcium mobilization mediated by CCR2b signaling was unaffected by the polymorphism, but MCP-1 signaling mediated by either CCR2b- or CCR2-V64I-encoded receptors resulted in heterologous desensitization (i.e., limiting the signal response of other receptors) of both CCR5 and CXCR4. The heterologous desensitization of CCR5 and CXCR4 signaling by bothCCR2 allele receptor types provides a mechanistic link that might help explain the in vivo effects of CCR2 gene variants on progression to AIDS as well as the reported antiviral activity of natural CCR2 ligands.


2001 ◽  
Vol 75 (18) ◽  
pp. 8752-8760 ◽  
Author(s):  
James R. Taylor ◽  
Katherine C. Kimbrell ◽  
Robert Scoggins ◽  
Marie Delaney ◽  
Lijun Wu ◽  
...  

ABSTRACT The presence or absence of the receptor CD4 and the coreceptors CCR5 and CXCR4 restrict the cell tropism of human immunodeficiency virus type 1 (HIV-1). Despite the importance of thymic infection by HIV-1, conflicting reports regarding the expression of HIV-1 coreceptors on human thymocytes have not been resolved. We assayed the expression and function of the major HIV-1 coreceptors, CCR5 and CXCR4, as well as CCR4 and CCR7 as controls, on human thymocytes. We detected CCR5 on 2.5% of thymocytes, CXCR4 on 53% of the cells, and CCR4 on 16% and CCR7 on 11% of human thymocytes. Moreover, infection by R5 HIV-1 did not significantly induce expression of CCR5. We found that two widely used anti-CCR5 monoclonal antibodies cross-reacted with CCR8, which may account for discrepancies among published reports of CCR5 expression on primary cells. This cross-reactivity could be eliminated by deletion of amino acids 2 through 4 of CCR8. Chemotaxis assays showed that SDF-1, which binds CXCR4; MDC, which binds CCR4; and ELC, which binds CCR7, mediated significant chemotaxis of thymocytes. In contrast, MIP-1β, whose receptor is CCR5, did not induce significant chemotaxis. Our results indicate that CXCR4, CCR4, CCR7, and their chemokine ligands may be involved in thymocyte migration during development in the thymus. CCR5 and its ligands, however, are likely not involved in these processes. Furthermore, the pattern of CCR5 and CXCR4 expression that we found may explain the greater susceptibility of human thymocytes to infection by HIV-1 isolates capable of using CXCR4 in cell entry compared to those that use only CCR5.


1999 ◽  
Vol 73 (3) ◽  
pp. 2350-2358 ◽  
Author(s):  
Stephen Y. Chan ◽  
Roberto F. Speck ◽  
Christopher Power ◽  
Sarah L. Gaffen ◽  
Bruce Chesebro ◽  
...  

ABSTRACT Binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 to both CD4 and one of several chemokine receptors (coreceptors) permits entry of virus into target cells. Infection of tissues may establish latent viral reservoirs as well as cause direct pathologic effects that manifest as clinical disease such as HIV-associated dementia. We sought to identify the critical coreceptors recognized by HIV-1 tissue-derived strains as well as to correlate these coreceptor preferences with site of infection and dementia diagnosis. To reconstitute coreceptor use, we cloned HIV-1 envelope V3 sequences encoding the primary determinants of coreceptor specificity from 13 brain-derived and 6 colon-derived viruses into an isogenic (NL4-3) viral background. All V3 recombinants utilized the chemokine receptor CCR5 uniformly and efficiently as a coreceptor but not CXCR4, BOB/GPR15, or Bonzo/STRL33. Other receptors such as CCR3, CCR8, and US28 were inefficiently and variably used as coreceptors by various envelopes. CCR5 without CD4 present did not allow for detectable infection by any of the tested recombinants. In contrast to the pathogenic switch in coreceptor specificity frequently observed in comparisons of blood-derived viruses early after HIV-1 seroconversion and after onset of AIDS, the characteristics of these V3 recombinants suggest that CCR5 is a primary coreceptor for brain- and colon-derived viruses regardless of tissue source or diagnosis of dementia. Therefore, tissue infection may not depend significantly on viral envelope quasispeciation to broaden coreceptor range but rather selects for CCR5 use throughout disease progression.


Sign in / Sign up

Export Citation Format

Share Document