scholarly journals A Heterologous, High-Affinity RNA Ligand for Human Immunodeficiency Virus Gag Protein Has RNA Packaging Activity

2000 ◽  
Vol 74 (1) ◽  
pp. 541-546 ◽  
Author(s):  
Jared L. Clever ◽  
Randy A. Taplitz ◽  
Michael A. Lochrie ◽  
Barry Polisky ◽  
Tristram G. Parslow

ABSTRACT Retroviral RNA encapsidation depends on the specific binding of Gag proteins to packaging (ψ) signals in genomic RNA. We investigated whether an in vitro-selected, high-affinity RNA ligand for the nucleocapsid (NC) portion of the Gag protein from human immunodeficiency virus type 1 (HIV-1) could mediate packaging into HIV-1 virions. We find that this ligand can functionally substitute for one of the Gag-binding elements (termed SL3) in the HIV-1 ψ locus to support packaging and viral infectivity in cis. By contrast, this ligand, which fails to dimerize spontaneously in vitro, is unable to replace a different ψ element (termed SL1) which is required for both Gag binding and dimerization of the HIV-1 genome. A single point mutation within the ligand that eliminates high-affinity in vitro Gag binding also abolishes its packaging activity at the SL3 position. These results demonstrate that specific binding of Gag or NC protein is a critical determinant of genomic RNA packaging.

1999 ◽  
Vol 73 (4) ◽  
pp. 3023-3031 ◽  
Author(s):  
Jane F. Kaye ◽  
Andrew M. L. Lever

ABSTRACT Retroviral RNA encapsidation is a highly selective process mediated through recognition by the viral Gag proteins of cis-acting RNA packaging signals in genomic RNA. This RNA species is also translated, producing the viral gag gene products. The relationship between these processes is poorly understood. Unlike that of human immunodeficiency virus type 1 (HIV-1), the dominant packaging signal of HIV-2 is upstream of the major splice donor and present in both unspliced and spliced viral RNAs, necessitating additional mechanisms for preferential packaging of unspliced genomic RNA. Encapsidation studies of a series of HIV-2-based vectors showed efficient packaging of viral genomes only if the unspliced, encapsidated RNA expressed full-length Gag protein, including functional nucleocapsid. We propose a novel encapsidation initiation mechanism, providing selectivity, in which unspliced HIV-2 RNA is captured in cis by the Gag protein. This has implications for the use of HIV-2 and other lentiviruses as vectors.


2000 ◽  
Vol 20 (18) ◽  
pp. 6958-6969 ◽  
Author(s):  
Mitchell E. Garber ◽  
Timothy P. Mayall ◽  
Eric M. Suess ◽  
Jill Meisenhelder ◽  
Nancy E. Thompson ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Tat interacts with cyclin T1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA to recruit P-TEFb and promote transcription elongation. We show here that Tat also stimulates phosphorylation of affinity-purified core RNA polymerase II and glutathioneS-transferase–C-terminal-domain substrates by CycT1-CDK9, but not CycH-CDK7, in vitro. Interestingly, incubation of recombinant Tat–P-TEFb complexes with ATP enhanced binding to TAR RNA dramatically, and the C-terminal half of CycT1 masked binding of Tat to TAR RNA in the absence of ATP. ATP incubation lead to autophosphorylation of CDK9 at multiple C-terminal Ser and Thr residues, and full-length CycT1 (amino acids 728) [CycT1(1–728)], but not truncated CycT1(1–303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1–303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1–303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat–P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.


2004 ◽  
Vol 78 (19) ◽  
pp. 10814-10819 ◽  
Author(s):  
Marcel Ooms ◽  
Hendrik Huthoff ◽  
Rodney Russell ◽  
Chen Liang ◽  
Ben Berkhout

ABSTRACT The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA—the Ψ and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Ψ hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.


1998 ◽  
Vol 72 (5) ◽  
pp. 3991-3998 ◽  
Author(s):  
Daniel C. St. Louis ◽  
Deanna Gotte ◽  
Eric Sanders-Buell ◽  
David W. Ritchey ◽  
Mika O. Salminen ◽  
...  

ABSTRACT Recombinant forms of human immunodeficiency virus type 1 (HIV-1) have been shown to be of major importance in the global AIDS pandemic. Viral RNA dimer formation mediated by the dimerization initiation sequence (DIS) is believed to be essential for viral genomic RNA packaging and therefore for RNA recombination. Here, we demonstrate that HIV-1 recombination and replication are not restricted by variant DIS loop sequences. Three DIS loop forms found among HIV-1 isolates, DIS (CG), DIS (TA), and DIS (TG), when introduced into deletion mutants of HIV-1 recombined efficiently, and the progeny virions replicated with comparable kinetics. A fourth DIS loop form, containing an artificial AAAAAA sequence disrupting the putative DIS loop-loop interactions [DIS (A6)], supported efficient recombination with DIS loop variants; however, DIS (A6) progeny virions exhibited a modest replication disadvantage in mixed cultures. Our studies indicate that the nonhomologous DIS sequences found in different HIV-1 subtypes are not a primary obstacle to intersubtype recombination.


1999 ◽  
Vol 73 (5) ◽  
pp. 4485-4488 ◽  
Author(s):  
Shan Cen ◽  
Yue Huang ◽  
Ahmad Khorchid ◽  
Jean-Luc Darlix ◽  
Mark A. Wainberg ◽  
...  

ABSTRACT During human immunodeficiency virus type 1 (HIV-1) assembly, the primer tRNA for the reverse transcriptase-catalyzed synthesis of minus-strand strong-stop cDNA, tRNA3 Lys, is selectively packaged into the virus and annealed onto the primer binding site on the RNA genome. Annealing of tRNA3 Lys in HIV-1 is independent of polyprotein processing and is facilitated in vitro by p7 nucleocapsid (NCp7). We have previously shown that mutations in clusters of basic amino acids flanking the first Cys-His box in NC sequence inhibit annealing of tRNA3 Lys in vivo by 70 to 80%. In this report, we have investigated whether these NC mutations act through Pr55 gag or Pr160 gag-pol . In vivo placement of tRNA3 Lys is measured with total viral RNA as the source of primer tRNA-template in an in vitro reverse transcription assay. Cotransfection of COS cells with a plasmid coding for either mutant Pr55 gag or mutant Pr160 gag-pol , and with a plasmid containing HIV-1 proviral DNA, shows that only the NC mutations in Pr55 gag inhibit tRNA3 Lysplacement. The NC mutations in Pr55 gag reduce viral infectivity by 95% and are trans-dominant-negative, i.e., they inhibit genomic placement of tRNA3 Lys even in the presence of wild-type Pr55 gag . This dominant phenotype may indicate that the mutant Pr55 gag is disrupting an ordered Pr55 gag structure responsible for the annealing of tRNA3 Lys to genomic RNA.


2004 ◽  
Vol 78 (2) ◽  
pp. 922-929 ◽  
Author(s):  
Jing Zhou ◽  
Xiong Yuan ◽  
David Dismuke ◽  
Brett M. Forshey ◽  
Christopher Lundquist ◽  
...  

ABSTRACT Despite the effectiveness of currently available human immunodeficiency virus type 1 (HIV-1) therapies, a continuing need exists for new drugs to treat HIV-1 infection. We investigated the mechanism by which 3-O-{3′,3′-dimethylsuccinyl}-betulinic acid (DSB) inhibits HIV-1 replication. DSB functions at a late stage of the virus life cycle but does not inhibit the HIV-1 protease in vitro or interfere with virus assembly or release. DSB specifically delays the cleavage of Gag between the capsid (CA) and p2, resulting in delayed formation of the mature viral core and reduced HIV-1 infectivity. Replication of simian immunodeficiency virus (SIV) was resistant to DSB; however, a chimeric SIV carrying CA-p2 sequences from HIV-1 was inhibited by the drug, indicating that susceptibility to DSB maps to the CA-p2 region of the HIV-1 Gag protein. A single point mutation at the CA-p2 cleavage site of HIV-1 conferred strong resistance to DSB, confirming the target of the drug. HIV-1 strains that are resistant to a variety of protease inhibitors were sensitive to DSB. These findings indicate that DSB specifically protects the CA-p2 cleavage site from processing by the viral protease during virion maturation, thereby revealing a novel mechanism for pharmacologic inhibition of HIV-1 replication.


2002 ◽  
Vol 76 (22) ◽  
pp. 11757-11762 ◽  
Author(s):  
Ya-Xiong Feng ◽  
Tong Li ◽  
Stephen Campbell ◽  
Alan Rein

ABSTRACT Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)n with more salt resistance than to d(A)n oligonucleotides. We found that assembly of VLPs on d(TG)n oligonucleotides was more salt resistant than assembly on d(A)n; thus, the oligonucleotides do not simply neutralize basic residues in Gag but provide a binding surface upon which Gag molecules assemble into VLPs. We also found that Gag molecules could be “trapped” on internal d(TG)n sequences within 40-base oligonucleotides, rendering them unable to take part in assembly. Thus, assembly on oligonucleotides requires that Gag proteins bind near the ends of the nucleic acid, and binding of Gag to internal d(TG)n sequences is apparently cooperative. Finally, we showed that nucleic acids in VLPs can exchange with nucleic acids in solution; there is a hierarchy of preferences in these exchange reactions. The results are consistent with an equilibrium model of in vitro assembly and may help to explain how Gag molecules in vivo select genomic RNA despite the presence in the cell of a vast excess of cellular mRNA molecules.


1999 ◽  
Vol 73 (3) ◽  
pp. 2270-2279 ◽  
Author(s):  
Stephen Campbell ◽  
Alan Rein

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Δp6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Δp6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Δp6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Δp6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Δp6 and nucleic acid are not sufficient for the formation of normal-sized particles.


2010 ◽  
Vol 84 (18) ◽  
pp. 9086-9095 ◽  
Author(s):  
Christopher Sundling ◽  
Sijy O'Dell ◽  
Iyadh Douagi ◽  
Mattias N. Forsell ◽  
Andreas Mörner ◽  
...  

ABSTRACT We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.


Sign in / Sign up

Export Citation Format

Share Document