scholarly journals Mutations That Increase In Situ Priming Also Decrease Circularization for Duck Hepatitis B Virus

2001 ◽  
Vol 75 (14) ◽  
pp. 6492-6497 ◽  
Author(s):  
Daniel D. Loeb ◽  
Ru Tian

ABSTRACT The process of hepadnavirus reverse transcription involves two template switches during the synthesis of plus-strand DNA. The first involves translocation of the plus-strand primer from its site of generation, the 3′ end of minus-strand DNA, to the complementary sequence DR2, located near the 5′ end of the minus-strand DNA. Plus strands initiated from DR2 are extended to the 5′ end of the minus-strand DNA. At this point, the 3′ end of the minus strand becomes the template via the second template switch, a process called circularization. Elongation of circularized plus-strand DNA generates relaxed circular DNA. Although most virions contain relaxed circular DNA, some contain duplex linear DNA. Duplex linear genomes are synthesized when the plus-strand primer is used at the site of its generation, the 3′ end of the minus-strand template. This type of synthesis is called in situ priming. Although in situ priming is normally low, in some duck hepatitis B virus mutants this type of priming is elevated. For example, mutations within the 3′ end of the minus-strand DNA can lead to increased levels of in situ priming. We report here that these same mutations result in a second defect, a less efficient template switch that circularizes the genome. Although it is not clear how these mutations affect both steps in DNA replication, our findings suggest a commonality in the mechanism of initiation of plus-strand synthesis and the template switch that circularizes the genome.

2002 ◽  
Vol 76 (3) ◽  
pp. 980-989 ◽  
Author(s):  
Jeffrey W. Habig ◽  
Daniel D. Loeb

ABSTRACT There are two mutually exclusive pathways for plus-strand DNA synthesis in hepadnavirus reverse transcription. The predominant pathway gives rise to relaxed circular DNA, while the other pathway yields duplex linear DNA. Both pathways use the same RNA primer, which is capped and 18 or 19 nucleotides in length. At the completion of minus-strand DNA synthesis, the final RNase H cleavage generates the plus-strand primer. To make relaxed circular DNA, primer translocation must occur, resulting in the transfer of the primer generated at DR1 to the acceptor site (DR2) near the opposite end of the minus-strand DNA. A small fraction of viruses instead make duplex linear DNA after initiating plus-strand DNA synthesis from DR1, a process called in situ priming. We are interested in understanding the mechanism of discrimination between these two pathways. Some variants of duck hepatitis B virus exhibit high levels of in situ priming due to cis-acting mutations. The mechanism by which these mutations act has been obscure. Sequence inspection predicted formation of a small DNA hairpin in the region overlapping these mutations. We have shown that substitutions disrupting base pairing potential in this hairpin led to increased levels of in situ priming. The introduction of compensatory changes to restore base pairing potential led to reduced levels of in situ priming. Thus, formation of the small DNA hairpin overlapping the 5′ end of DR1 in the minus strand contributes to the regulation of primer translocation, at least, through inhibition of in situ priming by making the 3′ end of the minus-strand DNA a poor template for initiation.


2002 ◽  
Vol 76 (6) ◽  
pp. 2763-2769 ◽  
Author(s):  
Michael B. Havert ◽  
Lin Ji ◽  
Daniel D. Loeb

ABSTRACT The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5′r and 3′r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5′ end, the middle, and the 3′ end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3′ of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism.


2003 ◽  
Vol 77 (23) ◽  
pp. 12412-12420 ◽  
Author(s):  
Jeffrey W. Habig ◽  
Daniel D. Loeb

ABSTRACT Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3′ end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. Circularization involves transfer of the nascent 3′ end of the plus strand from the 5′ end of the minus-strand DNA to the 3′ end, where further elongation can lead to production of RC DNA. In duck hepatitis B virus (DHBV), a small terminal redundancy (5′r and 3′r) on the ends of the minus-strand DNA has been shown to be important, but not sufficient, for circularization. We investigated what contribution, if any, the base composition of the terminal redundancy made to the circularization process. Using a genetic approach, we found a strong positive correlation between the fraction of A and T residues within the terminal redundancy and the efficiency of the circularization process in those variants. Additionally, we found that the level of in situ priming increases, at the expense of primer translocation, as the fraction of A and T residues in the 3′r decreases. Thus, a terminal redundancy rich in A and T residues is important for both plus-strand template switches in DHBV.


Virology ◽  
2013 ◽  
Vol 446 (1-2) ◽  
pp. 357-364 ◽  
Author(s):  
Georget Y. Reaiche-Miller ◽  
Michael Thorpe ◽  
Huey Chi Low ◽  
Qiao Qiao ◽  
Catherine A. Scougall ◽  
...  

2005 ◽  
Vol 79 (15) ◽  
pp. 9896-9903 ◽  
Author(s):  
Yong-Yuan Zhang ◽  
Daniel P. Theele ◽  
Jesse Summers

ABSTRACT Inoculation of 3-day-old (3D) or 3-week-old (3W) ducklings with duck hepatitis B virus results in chronic or transient infection, respectively. We previously showed that rapid production of neutralizing antibody following inoculation of 3W ducklings prevents virus from spreading in the liver and leads to a transient infection (Y.-Y. Zhang and J. Summers, J. Virol. 78:1195-1201, 2004). In this study we further investigated early events of viral infection in both 3D and 3W ducks. We present evidence that a lower level of virus replication in the hepatocytes of 3W birds is an additional factor that probably favors transient infection. We suggest that lower virus replication is due to a less rapid covalently closed circular DNA amplification, leading to lower viremias and a slower spread of infection in the liver, and that the slower spread of infection in 3W ducks makes the infection more sensitive to interruption by the host immune responses.


Virology ◽  
1988 ◽  
Vol 166 (2) ◽  
pp. 475-485 ◽  
Author(s):  
Valerie Bosch ◽  
Ralf Bartenschlager ◽  
Gerald Radziwill ◽  
Heinz Schaller

Sign in / Sign up

Export Citation Format

Share Document