template switches
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

PLoS Biology ◽  
2014 ◽  
Vol 12 (10) ◽  
pp. e1001968 ◽  
Author(s):  
Violena Pietrobon ◽  
Karine Fréon ◽  
Julien Hardy ◽  
Audrey Costes ◽  
Ismail Iraqui ◽  
...  

2014 ◽  
Author(s):  
Justus M Kebschull ◽  
Anthony M Zador

PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error ? bias, stochasticity, template switches and polymerase errors ? on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules.


2014 ◽  
Vol 55 (4) ◽  
pp. 615-625 ◽  
Author(s):  
Olga Tsaponina ◽  
James E. Haber

2007 ◽  
Vol 81 (12) ◽  
pp. 6207-6215 ◽  
Author(s):  
Eric B. Lewellyn ◽  
Daniel D. Loeb

ABSTRACT Hepadnaviruses utilize two template switches (primer translocation and circularization) during synthesis of plus-strand DNA to generate a relaxed-circular (RC) DNA genome. In duck hepatitis B virus (DHBV) three cis-acting sequences, 3E, M, and 5E, contribute to both template switches through base pairing, 3E with the 3′ portion of M and 5E with the 5′ portion of M. Human hepatitis B virus (HBV) also contains multiple cis-acting sequences that contribute to the accumulation of RC DNA, but the mechanisms through which these sequences contribute were previously unknown. Three of the HBV cis-acting sequences (h3E, hM, and h5E) occupy positions equivalent to those of the DHBV 3E, M, and 5E. We present evidence that h3E and hM contribute to the synthesis of RC DNA through base pairing during both primer translocation and circularization. Mutations that disrupt predicted base pairing inhibit both template switches while mutations that restore the predicted base pairing restore function. Therefore, the h3E-hM base pairing appears to be a conserved requirement for template switching during plus-strand DNA synthesis of HBV and DHBV. Also, we show that base pairing is not sufficient to explain the mechanism of h3E and hM, as mutating sequences adjacent to the base pairing regions inhibited both template switches. Finally, we did not identify predicted base pairing between h5E and the hM region, indicating a possible difference between HBV and DHBV. The significance of these similarities and differences between HBV and DHBV will be discussed.


2004 ◽  
Vol 78 (14) ◽  
pp. 7455-7464 ◽  
Author(s):  
Jehan Lee ◽  
Myeong-Kyun Shin ◽  
Hye-Jin Lee ◽  
Gyesoon Yoon ◽  
Wang-Shick Ryu

ABSTRACT Synthesis of the relaxed-circular (RC) DNA genomes of hepadnaviruses by reverse transcriptase involves two template switches during plus-strand DNA synthesis. These template switches require repeat sequences (so-called donor and acceptor sites) between which a complementary strand of nucleic acid is transferred. To determine cis-acting elements apart from the donor and acceptor sites that are required for plus-strand RC DNA synthesis by hepatitis B virus (HBV), a series of mutants bearing a small deletion were made and analyzed for their impact on the viral genome synthesis. We found three novel cis-acting elements in the HBV genome: one element, located in the middle of the minus strand, is indispensable, whereas the other two elements, located near either end of the minus strand, contribute modestly to the plus-strand RC DNA synthesis. The data indicated that the first element facilitates plus-strand RNA primer translocation or subsequent elongation during plus-strand RC DNA synthesis, while the last two elements, although distantly located on the minus strand, act at multiple steps to promote plus-strand RC DNA synthesis. The necessity of multiple cis-acting elements on the minus-strand template reflects the complex nature of hepadnavirus reverse transcription.


2003 ◽  
Vol 77 (23) ◽  
pp. 12412-12420 ◽  
Author(s):  
Jeffrey W. Habig ◽  
Daniel D. Loeb

ABSTRACT Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3′ end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. Circularization involves transfer of the nascent 3′ end of the plus strand from the 5′ end of the minus-strand DNA to the 3′ end, where further elongation can lead to production of RC DNA. In duck hepatitis B virus (DHBV), a small terminal redundancy (5′r and 3′r) on the ends of the minus-strand DNA has been shown to be important, but not sufficient, for circularization. We investigated what contribution, if any, the base composition of the terminal redundancy made to the circularization process. Using a genetic approach, we found a strong positive correlation between the fraction of A and T residues within the terminal redundancy and the efficiency of the circularization process in those variants. Additionally, we found that the level of in situ priming increases, at the expense of primer translocation, as the fraction of A and T residues in the 3′r decreases. Thus, a terminal redundancy rich in A and T residues is important for both plus-strand template switches in DHBV.


2003 ◽  
Vol 77 (23) ◽  
pp. 12401-12411 ◽  
Author(s):  
Jeffrey W. Habig ◽  
Daniel D. Loeb

ABSTRACT Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3′ end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. A small DNA hairpin has been shown to form near the 3′ end of the minus-strand DNA overlapping the direct repeat 1 in avihepadnaviruses. Previously we showed that this hairpin is involved in discriminating between two mutually exclusive pathways for the initiation of plus-strand DNA synthesis. In its absence, the pathway leading to production of duplex linear DNA is favored, whereas primer translocation is favored in its presence, apparently through the inhibition of in situ priming. Circularization involves transfer of the nascent plus strand from the 5′ end of the minus-strand DNA to the 3′ end, where further elongation can lead to production of RC DNA. Using both genetic and biochemical approaches, we now have found that the small DNA hairpin in the duck hepatitis B virus (DHBV) makes a positive contribution to circularization. The contribution appears to be through its impact on the conformation of the acceptor site. We also identified a unique DHBV variant that can synthesize RC DNA well in the absence of the hairpin. The behavior of this variant could serve as a model for understanding the mammalian hepadnaviruses, in which an analogous hairpin does not appear to exist.


2002 ◽  
Vol 76 (9) ◽  
pp. 4260-4266 ◽  
Author(s):  
Karlyn Mueller-Hill ◽  
Daniel D. Loeb

ABSTRACT Hepadnaviral reverse transcription requires template switches for the genesis of relaxed circular (RC) DNA, the major genomic form in virions. Two template switches, primer translocation and circularization, are required during the synthesis of the second, or plus, strand of DNA. Studies of duck hepatitis B virus (DHBV) indicate that in addition to the requirement for repeated sequences at the donor and acceptor sites, template switching requires at least three other cis-acting sequences, 5E, M, and 3E. In this study we analyzed a series of variant heron hepatitis B viruses (HHBV) in which the regions of the genome that would be expected to contain 5E, M, and 3E were replaced with DHBV sequence. We found that all single and double chimeras were partially defective in the synthesis of RC DNA. In contrast, the triple chimera was able to synthesize RC DNA at a level comparable to that of unchanged HHBV. These results indicate that the three cis-acting sequences, 5E, M, and 3E, need to be compatible to contribute to RC DNA synthesis, suggesting that these sequences interact during plus-strand synthesis. Second, we found that the defect in RC DNA synthesis for several of the single and double chimeric viruses resulted from a partial defect in primer translocation/utilization and a partial defect in circularization. These findings indicate that the processes of primer translocation and circularization share a mechanism during which 5E, M, and 3E interact.


2002 ◽  
Vol 76 (6) ◽  
pp. 2763-2769 ◽  
Author(s):  
Michael B. Havert ◽  
Lin Ji ◽  
Daniel D. Loeb

ABSTRACT The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5′r and 3′r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5′ end, the middle, and the 3′ end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3′ of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism.


Sign in / Sign up

Export Citation Format

Share Document