scholarly journals Activated Peripheral CD8 Lymphocytes Express CD4 In Vivo and Are Targets for Infection by Human Immunodeficiency Virus Type 1

2001 ◽  
Vol 75 (23) ◽  
pp. 11555-11564 ◽  
Author(s):  
S. Imlach ◽  
S. McBreen ◽  
T. Shirafuji ◽  
C. Leen ◽  
J. E. Bell ◽  
...  

ABSTRACT There is increasing evidence that CD8 lymphocytes may represent targets for infection by human immunodeficiency virus type 1 (HIV-1) in vivo whose destruction may contribute to the loss of immune function underlying AIDS. HIV-1 may infect thymic precursor cells destined to become CD4 and CD8 lymphocytes and contribute to the numerical decline in both subsets on disease progression. There is also evidence for the induction of CD4 expression and susceptibility to infection by HIV-1 of CD8 lymphocytes activated in vitro. To investigate the relationship between CD8 activation and infection by HIV-1 in vivo, activated subsets of CD8 lymphocytes in peripheral blood mononuclear cells (PBMCs) of HIV-seropositive individuals were investigated for CD4 expression and HIV infection. Activated CD8 lymphocytes were identified by expression of CD69, CD71, and the human leukocyte antigen (HLA) class II, the β-chain of CD8, and the RO isoform of CD45. CD4+ and CD4− CD8 lymphocytes, CD4 lymphocytes, other T cells, and non-T cells were purified using paramagnetic beads, and proviral sequences were quantified by PCR using primers from the long terminal repeat region. Frequencies of activated CD8 lymphocytes were higher in HIV-infected study subjects than in seronegative controls, and they frequently coexpressed CD4 (mean frequencies on CD69+, CD71+, and HLA class II+ cells of 23, 37, and 8%, respectively, compared with 1 to 2% for nonactivated CD8 lymphocytes). The level of CD4 expression of the double-positive population approached that of mature CD4 lymphocytes. That CD4 expression renders CD8 cell susceptible to infection was indicated by their high frequency of infection in vivo; infected CD4+ CD8 lymphocytes accounted for between 3 and 72% of the total proviral load in PBMCs from five of the eight study subjects investigated, despite these cells representing a small component of the PBMC population (<3%). Combined, these findings provide evidence that antigenic stimulation of CD8 lymphocytes in vivo induces CD4 expression that renders them susceptible to HIV infection and destruction. The specific targeting of responding CD8 lymphocytes may provide a functional explanation for the previously observed impairment of cytotoxic T-lymphocyte (CTL) function disproportionate to their numerical decline in AIDS and for the deletion of specific clones of CTLs responding to HIV antigens.

2004 ◽  
Vol 78 (21) ◽  
pp. 12054-12057 ◽  
Author(s):  
Fabienne Rayne ◽  
Agnès Vendeville ◽  
Anne Bonhoure ◽  
Bruno Beaumelle

ABSTRACT Hydroxychloroquine at 1 μM reduces the load of human immunodeficiency virus type 1 (HIV-1) in patients, whereas chloroquine (CQ) concentrations above 3 μM are required for inhibition of HIV-1 replication in peripheral blood mononuclear cells. Exogenous HIV-1 Tat reaches the cytosol of T cells by using low endosomal pH, and endosome neutralization by CQ prevents Tat from entering and affecting T cells. We show here that 0.6 μM CQ inhibits cytokine secretion induced by Tat in monocytes without affecting lipopolysaccharide-triggered cytokine release. This finding suggests that the in vivo anti-HIV-1 effect of CQ results not from a direct effect on the infected cell but rather from the capacity of CQ to prevent Tat from perturbing the cytokine balance.


2007 ◽  
Vol 81 (13) ◽  
pp. 6947-6956 ◽  
Author(s):  
Zilin Nie ◽  
Gary D. Bren ◽  
Stacey R. Vlahakis ◽  
Alicia Algeciras Schimnich ◽  
Jason M. Brenchley ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection causes apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 and CD8 T cells. It remains unknown what signals cause infected cells to die. We demonstrate that HIV-1 protease specifically cleaves procaspase 8 to create a novel fragment termed casp8p41, which independently induces apoptosis. casp8p41 is specific to HIV-1 protease-induced death but not other caspase 8-dependent death stimuli. In HIV-1-infected patients, casp8p41 is detected only in CD4+ T cells, predominantly in the CD27+ memory subset, its presence increases with increasing viral load, and it colocalizes with both infected and apoptotic cells. These data indicate that casp8p41 independently induces apoptosis and is a specific product of HIV-1 protease which may contribute to death of HIV-1-infected cells.


2003 ◽  
Vol 77 (10) ◽  
pp. 5846-5854 ◽  
Author(s):  
Andreas Jekle ◽  
Oliver T. Keppler ◽  
Erik De Clercq ◽  
Dominique Schols ◽  
Mark Weinstein ◽  
...  

ABSTRACT The destruction of the immune system by progressive loss of CD4 T cells is the hallmark of AIDS. CCR5-dependent (R5) human immunodeficiency virus type 1 (HIV-1) isolates predominate in the early, asymptomatic stages of HIV-1 infection, while CXCR4-dependent (X4) isolates typically emerge at later stages, frequently coinciding with a rapid decline in CD4 T cells. Lymphocyte killing in vivo primarily occurs through apoptosis, but the importance of apoptosis of HIV-1-infected cells relative to apoptosis of uninfected bystander cells is controversial. Here we show that in human lymphoid tissues ex vivo, apoptosis of uninfected bystander CD4 T cells is a major mechanism of lymphocyte depletion caused by X4 HIV-1 strains but is only a minor mechanism of depletion by R5 strains. Further, X4 HIV-1-induced bystander apoptosis requires the interaction of the viral envelope glycoprotein gp120 with the CXCR4 coreceptor on CD4 T cells. These results emphasize the contribution of bystander apoptosis to HIV-1 cytotoxicity and suggest that in association with a coreceptor switch in HIV disease, T-cell killing evolves from an infection-restricted stage to generalized toxicity that involves a high degree of bystander apoptosis.


1998 ◽  
Vol 72 (12) ◽  
pp. 10323-10327 ◽  
Author(s):  
Caterina Lapenta ◽  
Stefania Parlato ◽  
Massimo Spada ◽  
Stefano M. Santini ◽  
Paola Rizza ◽  
...  

ABSTRACT In this article, we show that passage in SCID mice rendered a human CD4+ T-cell line (CEM cells) highly susceptible to infection by macrophage-tropic (M-tropic) strains and primary clinical isolates of human immunodeficiency virus type 1 (HIV-1). This in vivo-acquired permissiveness of CEM cells was associated with the induction of a CD45RO+ phenotype as well as of some β-chemokine receptors. Regulated upon activation, normal T-cell expressed and secreted chemokine entirely inhibited the ability of M-tropic HIV-1 strains to infect these cells. These findings may lead to new approaches in investigating in vivo the capacity of different HIV strains to exploit chemokine receptors in relation to the dynamics of the activation and/or differentiation state of human CD4+ T cells.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 2128-2135 ◽  
Author(s):  
MP Busch ◽  
TH Lee ◽  
J Heitman

Abstract Various immunologic stimuli and heterologous viral regulatory elements have been shown to increase susceptibility to, and replication of, human immunodeficiency virus type 1 (HIV-1) in lymphocytes and monocytes in vitro. Transfusion of allogeneic blood components from heterologous donors constitutes a profound immunologic stimulus to the recipient, in addition to being a potential route of transmission of lymphotropic viral infections. To investigate the hypothesis that transfusions, and particularly those containing leukocytes, activate HIV-1 replication in infected recipient cells, we cocultured peripheral blood mononuclear cells (PBMC) from three anti-HIV-1-positive individuals with allogeneic donor PBMC, as well as partially purified populations of donor lymphocytes, monocytes, granulocytes, platelets, and red blood cells (RBC) and allogeneic cell-free plasma. Allogeneic PBMC induced a dose-related activation of HIV-1 expression in in vivo infected cells, followed by dissemination of HIV-1 to previously uninfected patient cells. Activation of HIV-1 replication was observed with donor lymphocytes, monocytes, and granulocytes, whereas no effect was seen with leukocyte-depleted RBC, platelets, or plasma (ie, therapeutic blood constituents). Allogeneic donor PBMC were also shown to upregulate HIV-1 expression in a “latently” infected cell line, and to increase susceptibility of heterologous donor PBMC to acute HIV-1 infection. Studies should be performed to evaluate whether transfusions of leukocyte-containing blood components accelerate HIV-1 dissemination and disease progression in vivo. If so, HIV-1-infected patients should be transfused as infrequently as possible and leukocyte-depleted (filtered) blood components should be used to avoid this complication.


2002 ◽  
Vol 46 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Jan Münch ◽  
Ludger Ständker ◽  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Armin Papkalla ◽  
...  

ABSTRACT Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.


2005 ◽  
Vol 79 (15) ◽  
pp. 10053-10058 ◽  
Author(s):  
Angélique B. van ′t Wout ◽  
J. Victor Swain ◽  
Michael Schindler ◽  
Ushnal Rao ◽  
Melissa S. Pathmajeyan ◽  
...  

ABSTRACT Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4+ T cells. Consistent with our microarray data, 14C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.


2000 ◽  
Vol 74 (15) ◽  
pp. 7039-7047 ◽  
Author(s):  
Louis M. Mansky ◽  
Sandra Preveral ◽  
Luc Selig ◽  
Richard Benarous ◽  
Serge Benichou

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-binding properties and used to trans complement vpr null mutant HIV-1. A striking correlation was established between the abilities of Vpr to interact with UNG and to influence the HIV-1 mutation rate. We demonstrate that Vpr incorporation into virus particles is required to influence the in vivo mutation rate and to mediate virion packaging of the nuclear form of UNG. The recruitment of UNG into virions indicates a mechanism for how Vpr can influence reverse transcription accuracy. Our data suggest that distinct mechanisms evolved in primate and nonprimate lentiviruses to reconcile uracil misincorporation into lentiviral DNA.


2003 ◽  
Vol 84 (10) ◽  
pp. 2715-2722 ◽  
Author(s):  
Gkikas Magiorkinis ◽  
Dimitrios Paraskevis ◽  
Anne-Mieke Vandamme ◽  
Emmanouil Magiorkinis ◽  
Vana Sypsa ◽  
...  

Recombination plays a pivotal role in the evolutionary process of many different virus species, including retroviruses. Analysis of all human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants revealed that they are more complex than described initially. Recombination frequency is higher within certain genomic regions, such as partial reverse transcriptase (RT), vif/vpr, the first exons of tat/rev, vpu and gp41. A direct correlation was observed between recombination frequency and sequence similarity across the HIV-1 genome, indicating that sufficient sequence similarity is required upstream of the recombination breakpoint. This finding suggests that recombination in vivo may occur preferentially during reverse transcription through the strand displacement-assimilation model rather than the copy-choice model.


Sign in / Sign up

Export Citation Format

Share Document