scholarly journals Identification and Characterization of a Regulatory Domain on the Carboxyl Terminus of the Measles Virus Nucleocapsid Protein

2002 ◽  
Vol 76 (17) ◽  
pp. 8737-8746 ◽  
Author(s):  
Xinsheng Zhang ◽  
Candace Glendening ◽  
Hawley Linke ◽  
Christopher L. Parks ◽  
Charles Brooks ◽  
...  

ABSTRACT The paramyxovirus template for transcription and genome replication consists of the RNA genome encapsidated by the nucleocapsid protein (N protein). The activity of the complex, consisting of viral polymerase plus template, can be measured with minireplicons in which the genomic coding sequence is replaced by chloramphenical acetyltransferase (CAT) antisense RNA. Using this approach, we showed that the C-terminal 24 amino acids of the measles virus N protein are dispensable for transcription and replication, based upon the truncation of N proteins used to support minireplicon reporter gene expression. Truncation at the C-terminal or penultimate amino acid 524 resulted in no change in CAT expression, whereas larger truncations spanning residues 523 to 502 were accompanied by an approximately twofold increase in basal activity. Reporter gene expression was enhanced by supplementation with the major inducible 70-kDa heat shock protein (Hsp72) for minireplicons with the N protein or the N protein truncated at position 525 or 524 but not in systems with a truncation at position 523 or 522. Naturally occurring sequence variants of the N protein with variations at positions 522 and 523 were also shown to lack Hsp72 responsiveness independent of changes in basal activity. Since these residues lie within a linear sequence predicting a direct Hsp72 interaction, N protein-Hsp72 binding reactions were analyzed by using surface plasmon resonance technology. Truncation of the C-terminal portion of the N protein by protease digestion resulted in a reduced binding affinity between Hsp72 and the N protein. Furthermore, with synthetic peptides, we established a correlation between the functional responsiveness and the binding affinity for Hsp72 of C-terminal N protein sequences. Collectively, these results show that the C-terminal 24 amino acids of the N protein represent a regulatory domain containing a functional motif that mediates a direct interaction with Hsp72.

Virology ◽  
2006 ◽  
Vol 348 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Susan E. Witko ◽  
Cheryl Kotash ◽  
Mohinderjit S. Sidhu ◽  
Stephen A. Udem ◽  
Christopher L. Parks

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Kai Sun ◽  
Yan Liang ◽  
Shuo Wang ◽  
Kaili Wu ◽  
...  

Rice stripe virus (RSV), a tenuivirus with four negative-sense/ambisense genome segments, is one of the most devastating viral pathogens affecting rice production in many Asian countries. Despite extensive research, our understanding of RSV infection cycles and pathogenesis has been severely impaired by the lack of reverse genetics tools. In this study, we have engineered RSV minireplicon (MR)/minigenome cassettes with reporter genes substituted for the viral open reading frames in the negative-sense RNA1 or the ambisense RNA2-4 segments. After delivery to Nicotiana benthamiana leaves via agroinfiltration, MR reporter gene expression was detected only when the codon-optimized large viral RNA polymerase protein (L) was coexpressed with the nucleocapsid (N) protein. MR activity was also critically dependent on the coexpressed viral suppressors of RNA silencing, but ectopic expression of the RSV-encoded NS3 silencing suppressor drastically decreased reporter gene expression. We also developed intercellular movement-competent MR systems with the movement protein expressed either in cis from an RNA4-based MR or in trans from a binary plasmid. Finally, we generated multicomponent replicon systems by expressing the N and L proteins directly from complementary-sense RNA1 and RNA3 derivatives, which enhanced reporter gene expression, permitted autonomous replication and intercellular movement, and reduced the number of plasmids required for delivery. In summary, this work enables reverse genetics analyses of RSV replication, transcription, and cell-to-cell movement and provides a platform for engineering more complex recombinant systems.


1993 ◽  
Vol 156 (2) ◽  
pp. 552-556 ◽  
Author(s):  
Prahlad T. Ram ◽  
Richard M. Schultz

1996 ◽  
Vol 30 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Mathias Zeidler ◽  
Christiane Gatz ◽  
Elmar Hartmann ◽  
Jon Hughes

1995 ◽  
Vol 29 (6) ◽  
pp. 1293-1298 ◽  
Author(s):  
Uwe K�hler ◽  
Marie-Fran�oise Liaud ◽  
Ralf R. Mendel ◽  
R�diger Cerff ◽  
Reinhard Hehl

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Anagha Sen ◽  
Shumei Ren ◽  
Jianxin Sun ◽  
Patrick Most ◽  
Karsten Peppel

Rationale: The EF-hand Ca2+ sensor S100A1 is essential for proper endothelial nitric oxide (NO) synthase (eNOS) activation. S100A1 levels are greatly reduced in endothelial cells (ECs) subjected to hypoxia, rendering them dysfunctional. Objective: To determine if the 3’UTR mediates the rapid hypoxia-induced downregulation of S100A1 in ECs. Methods and Results: ECs transfected with a S100A1 - 3’ untranslated region (UTR) luciferase reporter construct displayed significantly reduced gene expression when subjected to gas or chemical hypoxia. Bioinformatic analysis suggested that microRNA -138 (miR-138) could target the 3’UTR of S100A1. Hypoxia greatly increased miR-138 levels in ECs, but not in skeletal muscle C2C12 myotubes. Consistent with this finding, patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased miR-138 levels. Transfection of a miR-138 mimic into ECs reduced S100A1 - 3 ‘UTR reporter gene expression, while transfection of an anti miR-138 (antagomir) prevented the hypoxia-induced downregulation of the reporter gene. The increased levels of miR-138 are dependent on Hif1-α activation as treatment with siRNA against Hif1-α prevented S100A1 reporter gene downregulation after hypoxia. Conversely, specific activation of Hif1-α by a selective prolyl-hydroxylase inhibitor (IOX2) reduced reporter gene expression. Finally, ECs transfected with miR-138 mimic displayed reduced tube formation when plated onto Matrigel matrix and expressed less NO when stimulated with VEGF. These effects were reversed by gene transfer of S100A1 using recombinant adenovirus. Conclusions: Our study shows that miR-138 is an essential mediator of EC dysfunction via its ability to target the 3’UTR of S100A1 in a hypoxia-induced manner. MiR-138 might thus be an attractive target for the treatment of pathologies that are linked to endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document