scholarly journals Nucleoside Analog Resistance Caused by Insertions in the Fingers of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Involves ATP-Mediated Excision

2002 ◽  
Vol 76 (18) ◽  
pp. 9143-9151 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Although anti-human immunodeficiency virus type 1 (HIV-1) therapy has prolonged the lives of patients, drug resistance is a significant problem. Of particular concern are mutations that cause cross-resistance to a particular class of drugs. Among the mutations that cause resistance to several nucleoside analogs are the insertion of amino acids in the fingers subdomain of HIV-1 reverse transcriptase (RT) at positions 69 and 70. These insertions are usually associated with changes in the flanking amino acids and with a change to F or Y at position 215. We have proposed that the T215F/Y mutation makes the binding of ATP to HIV-1 RT more effective, which increases the excision of 3-azido-3′-deoxythymidine-5′-monophosphate (AZTMP) in vitro and increases zidovudine (AZT) resistance in vivo. Although the mechanism of AZT resistance involves enhanced excision, resistance to 3TC involves a block to incorporation of the analog. We measured the effects of fingers insertion mutations on the misincorporation and excision of several nucleoside analogs. RT variants with the amino acid insertions in the fingers and T215Y have a decreased level of misincorporation of ddATP and 3TCTP. These mutants also have the ability to excise AZTMP by ATP-dependent pyrophosphorylysis. However, unlike the classic AZT resistance mutations (M41L/D67N/K70R/T215Y or F/K219E or Q), the combination of the amino acid insertions in the fingers and the T215Y mutation allows efficient excision of ddTMP and d4TMP, even when relatively high levels of deoxynucleoside triphosphates are present in the reaction. Although the dideoxynucleoside analogs of other nucleosides were excised more slowly than AZTMP, ddTMP, and d4TMP, the mutants with the fingers insertion and T215Y excised all of the nucleoside analogs that were tested more efficiently than wild-type RT or a mutant RT carrying the classical AZT resistance mutations. In the ternary complex (RT/template-primer/dNTP), the presence of the bound dNTP prevents the end of the primer from gaining access to the nucleotide binding site (N site) where excision occurs. Gel shift analysis showed that the amino acid insertions in the fingers destabilized the ternary complex compared to wild-type HIV-1 RT. If the ternary complex is unstable, the end of the primer can gain access to the N site and excision can occur. This could explain the enhanced excision of the nucleoside analogs.

2001 ◽  
Vol 75 (10) ◽  
pp. 4832-4842 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Two distinct mechanisms can be envisioned for resistance of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) to nucleoside analogs: one in which the mutations interfere with the ability of HIV-1 RT to incorporate the analog, and the other in which the mutations enhance the excision of the analog after it has been incorporated. It has been clear for some time that there are mutations that selectively interfere with the incorporation of nucleoside analogs; however, it has only recently been proposed that zidovudine (AZT) resistance can involve the excision of the nucleoside analog after it has been incorporated into viral DNA. Although this proposal resolves some important issues, it leaves some questions unanswered. In particular, how do the AZT resistance mutations enhance excision, and what mechanism(s) causes the excision reaction to be relatively specific for AZT? We have used both structural and biochemical data to develop a model. In this model, several of the mutations associated with AZT resistance act primarily to enhance the binding of ATP, which is the most likely pyrophosphate donor in the in vivo excision reaction. The AZT resistance mutations serve to increase the affinity of RT for ATP so that, at physiological ATP concentrations, excision is reasonably efficient. So far as we can determine, the specificity of the excision reaction for an AZT-terminated primer is not due to the mutations that confer resistance, but depends instead on the structure of the region around the HIV-1 RT polymerase active site and on its interactions with the azido group of AZT. Steric constraints involving the azido group cause the end of an AZT 5′-monophosphate-terminated primer to preferentially reside at the nucleotide binding site, which favors excision.


1999 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David E. Ott ◽  
Elena N. Chertova ◽  
Laura K. Busch ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi ◽  
...  

ABSTRACT The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


1998 ◽  
Vol 72 (5) ◽  
pp. 3520-3523 ◽  
Author(s):  
Sabine Yerly ◽  
Abdelrahim Rakik ◽  
Sabine Kinloch De Loes ◽  
Bernard Hirschel ◽  
Diane Descamps ◽  
...  

ABSTRACT Sequences of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) domain were determined by direct sequencing of HIV-1 RNA in successive plasma samples from eight seroconverting patients infected with virus bearing the T215Y/F amino acid substitution associated with zidovudine (ZDV) resistance. At baseline, additional mutations associated with ZDV resistance were detected. Three patients had the M41L amino acid change, which persisted. Two patients had both the D67N and the K70R amino acid substitutions; reversion to the wild type was seen at both positions in one of these patients and at codon 70 in the other one. Reversion to the wild type at codon 215 was observed in only one of eight patients. Unusual amino acids, such as aspartic acid (D) and cysteine (C), appeared at position 215 in four patients during follow-up. These variants isolated by coculturing were sensitive to ZDV. Overgrowth of these variants suggests that they have better fitness than the original T215Y variant. Intraindividual nucleoside substitutions over time were 10 times more frequent in codons associated with ZDV resistance (41, 67, 70, 215, and 219) than in other codons of the RT domain. The predominance of nonsynonymous substitutions observed over time suggests that most changes reflect adaptation of the RT function. The variance in sequence evolution observed among patients, in particular at codon 215, supports a role for chance in the evolution of the RT domain.


2004 ◽  
Vol 48 (3) ◽  
pp. 992-1003 ◽  
Author(s):  
Kirsten L. White ◽  
James M. Chen ◽  
Nicolas A. Margot ◽  
Terri Wrin ◽  
Christos J. Petropoulos ◽  
...  

ABSTRACT Two amino acids inserted between residues 69 and 70 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rare mutations that may develop in viruses containing multiple thymidine analog (zidovudine [AZT], stavudine)-associated mutations and that confer high-level resistance to all currently approved chain-terminating nucleoside and nucleotide RT inhibitors (NRTIs). The two known mechanisms of resistance to NRTIs are decreased incorporation and increased excision. The mechanism used by RT insertion mutants has not been described for tenofovir (TFV), a recently approved agent in this class. A patient-derived HIV-1 strain (strain FS-SSS) that contained an insertion mutation in a background of additional resistance mutations M41L, L74V, L210W, and T215Y was obtained. A second virus (strain FS) was derived from FS-SSS. In strain FS the insertion and T69S were reverted but the other resistance mutations were retained. The FS virus showed strong resistance to AZT but low-level changes in susceptibilities to other NRTIs and TFV. The FS-SSS virus showed reduced susceptibilities to all NRTIs including TFV. Steady-state kinetics demonstrated that the relative binding or incorporation of TFV was slightly decreased for FS-SSS RT compared to those for wild-type RT. However, significant ATP-mediated excision of TFV was detected for both mutant RT enzymes and followed the order FS-SSS RT > FS RT > wild-type RT. The presence of physiological concentrations of the +1 nucleotide inhibited TFV excision by the wild-type RT and slightly inhibited excision by the FS RT, whereas the level of excision by the FS-SSS RT remained high. Computer modeling suggests that the increased mobility of the β3-β4 loop may contribute to the high-level and broad NRTI resistance caused by the T69 insertion mutation.


1995 ◽  
Vol 39 (4) ◽  
pp. 998-1002 ◽  
Author(s):  
J Balzarini ◽  
M Baba ◽  
E De Clercq

A series of 23 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives that were highly potent inhibitors of wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1/IIIB) replication in CEM cells were evaluated against a panel of HIV-1 mutant strains containing the replacement of leucine by isoleucine at position 100 (100-Leu-->Ile), 103-Lys-->Asn, 106-Val-->Ala, 138-Glu-->Lys, 181-Tyr-->Cys, 181-Tyr-->Ile, or 188-Tyr-->His in their reverse transcriptase (RT). A different structure-antiviral activity relationship was found, depending on the nature of the mutated amino acid in the HIV-1 RT. The results show that 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylbenzyl)uracil, 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)uracil, and 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)-2-thiouracil remain active against the majority of viruses containing single mutations which confer resistance to nonnucleoside RT inhibitors.


2001 ◽  
Vol 75 (21) ◽  
pp. 10479-10487 ◽  
Author(s):  
Raj Shankarappa ◽  
Ramdas Chatterjee ◽  
Gerald H. Learn ◽  
Dhruba Neogi ◽  
Ming Ding ◽  
...  

ABSTRACT India is experiencing a rapid spread of human immunodeficiency virus type 1 (HIV-1), primarily through heterosexual transmission of subtype C viruses. To delineate the molecular features of HIV-1 circulating in India, we sequenced the V3-V4 region of viralenv from 21 individuals attending an HIV clinic in Calcutta, the most populous city in the eastern part of the country, and analyzed these and the other Indian sequences in the HIV database. Twenty individuals were infected with viruses having a subtype Cenv, and one had viruses with a subtype Aenv. Analyses of 192 subtype C sequences that included one sequence for each subject from this study and from the HIV database revealed that almost all sequences from India, along with a small number from other countries, form a phylogenetically distinct lineage within subtype C, which we designate CIN. Overall, CIN lineage sequences were more closely related to each other (level of diversity, 10.2%) than to subtype C sequences from Botswana, Burundi, South Africa, Tanzania, and Zimbabwe (range, 15.3 to 20.7%). Of the three positions identified as signature amino acid substitution sites for CIN sequences (K340E, K350A, and G429E), 56% of the CIN sequences contained all three amino acids while 87% of the sequences contained at least two of these substitutions. Among the non-CINsequences, all three amino acids were present in 2%, while 22% contained two or more of these amino acids. These results suggest that much of the current Indian epidemic is descended from a single introduction into the country. Identification of conserved signature amino acid positions could assist epidemiologic tracking and has implications for the development of a vaccine against subtype C HIV-1 in India.


1999 ◽  
Vol 73 (4) ◽  
pp. 2781-2789 ◽  
Author(s):  
Koen Verhoef ◽  
Ben Berkhout

ABSTRACT We previously constructed a large set of mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Tat with conservative amino acid substitutions in the activation domain. These Tat variants were analyzed in the context of the infectious virus, and several mutants were found to be defective for replication. In an attempt to obtain second-site suppressor mutations that could provide information on the Tat protein structure, some of the replication-impaired viruses were used as a parent for the isolation of revertant viruses with improved replication capacity. Sequence analysis of revertant viruses frequently revealed changes within thetat gene, most often first-site reversions either to the wild-type amino acid or to related amino acids that restore, at least partially, the Tat function and virus replication. Of 30 revertant cultures, we identified only one second-site suppressor mutation. The inactive Y26A mutant yielded the second-site suppressor mutation Y47N that partially restored trans-activation activity and virus replication. Surprisingly, when the suppressor mutation was introduced in the wild-type Tat background, it also improved thetrans-activation function of this protein about twofold. We conclude that the gain of function measured for the Y47N change is not specific for the Y26A mutant, arguing against a direct interaction of Tat amino acids 26 and 47 in the three-dimensional fold of this protein. Other revertant viruses did not contain any additional Tat changes, and some viruses revealed putative second-site Tat mutations that did not significantly improve Tat function and virus replication. We reason that these mutations were introduced by chance through founder effects or by linkage to suppressor mutations elsewhere in the virus genome. In conclusion, the forced evolution of mutant HIV-1 genomes, which is an efficient approach for the analysis of RNA regulatory motifs, seems less suited for the analysis of the structure of this small transcription factor, although protein variants with interesting properties can be generated.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


2002 ◽  
Vol 76 (20) ◽  
pp. 10533-10539 ◽  
Author(s):  
Louis Alexander ◽  
Mary Janette Aquino-DeJesus ◽  
Michael Chan ◽  
Warren A. Andiman

ABSTRACT We studied a 15-year-old girl, patient X, who has maintained consistently low plasma loads of human immunodeficiency virus type 1 (HIV-1) RNA, as well as normal and stable CD4+ T-cell concentrations. She has presented no clinical manifestations of AIDS, despite having only received zidovudine monotherapy for a part of her life. Patient X's HIV-positive mother (patient Y) has also not progressed to AIDS and has never been treated with antiretroviral agents. HIV-1 isolated from patient X replicated poorly in human peripheral blood mononuclear cells (PBMC). In order to map the determinant of the poor growth of patient X's isolate, viral sequences from patient X were determined and examined for insertion or deletion mutations. These sequences contained a two-amino-acid insertion mutation in the Vif gene, which was also observed in uncultured PBMC acquired at different times. Furthermore, Vif sequences harbored by patient Y contained the identical mutation. These observations suggest that polymorphic HIV-1 was transmitted to patient X perinatally 15 years previously and has been maintained since that time. Recombinant HIV-1, engineered with Vif sequences from patient X, replicated in PBMC to levels approximately 20-fold lower than that of wild type. Removal of the insertion mutation from this recombinant restored replication efficiency to wild-type levels, while introduction of the insertion mutation into wild-type Vif sequences resulted in greatly decreased replication. Furthermore, Vif protein from patient X's HIV-1 was aberrantly cleaved, suggesting a mechanism for loss of Vif function. Since HIV-1 containing these sequences replicates poorly, the implication is that the two-amino-acid insertion mutation in Vif contributes significantly to the nonprogressor status of this mother and child. Further studies of these sequences might provide information regarding contributions of Vif structure and/or function to HIV-1 virulence.


2001 ◽  
Vol 75 (14) ◽  
pp. 6410-6417 ◽  
Author(s):  
Allan J. Hance ◽  
Virginie Lemiale ◽  
Jacques Izopet ◽  
Denise Lecossier ◽  
Véronique Joly ◽  
...  

ABSTRACT Mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease that confer resistance to antiretroviral agents are usually accompanied by a reduction in the viral replicative capacity under drug-free conditions. Consequently, when antiretroviral treatment is interrupted in HIV-1-infected patients harboring drug-resistant virus, resistant quasi-species appear to be most often replaced within several weeks by wild-type virus. Using a real-time PCR-based technique for the selective quantification of resistant viral sequences in plasma, we have studied the kinetics of the switch from mutant to wild-type virus and evaluated the extent to which minority populations of resistant viruses not detected by genotyping persist in these individuals. Among 12 patients with viruses expressing the V82A or L90M resistance mutation who had undergone a 3-month interruption of therapy and for whom conventional genotyping had revealed an apparent total reconversion to wild-type virus, minority populations expressing these mutations, representing 0.1 to 21% of total virus, were still detectable in 9 cases. Kinetic studies demonstrated that viruses expressing resistance mutations could be detected for >5 months after the discontinuation of treatment in some patients. Most of the minority resistant genomes detected more than 3 months after the interruption of therapy carried only part of the mutations present in the resistant viruses prior to treatment interruption and appeared to result from the emergence of existing strains selected at earlier stages in the development of drug resistance. Thus, following the interruption of treatment, viral populations containing resistance mutations can persist for several months after the time when conventional genotyping techniques detect only wild-type virus. These populations include viral strains with only some of the resistance mutations initially present, strains that presumably express better fitness under drug-free conditions.


Sign in / Sign up

Export Citation Format

Share Document