scholarly journals Inhibition of Human Immunodeficiency Virus Type 1 (HIV-1) Replication by a Two-Amino-Acid Insertion in HIV-1 Vif from a Nonprogressing Mother and Child

2002 ◽  
Vol 76 (20) ◽  
pp. 10533-10539 ◽  
Author(s):  
Louis Alexander ◽  
Mary Janette Aquino-DeJesus ◽  
Michael Chan ◽  
Warren A. Andiman

ABSTRACT We studied a 15-year-old girl, patient X, who has maintained consistently low plasma loads of human immunodeficiency virus type 1 (HIV-1) RNA, as well as normal and stable CD4+ T-cell concentrations. She has presented no clinical manifestations of AIDS, despite having only received zidovudine monotherapy for a part of her life. Patient X's HIV-positive mother (patient Y) has also not progressed to AIDS and has never been treated with antiretroviral agents. HIV-1 isolated from patient X replicated poorly in human peripheral blood mononuclear cells (PBMC). In order to map the determinant of the poor growth of patient X's isolate, viral sequences from patient X were determined and examined for insertion or deletion mutations. These sequences contained a two-amino-acid insertion mutation in the Vif gene, which was also observed in uncultured PBMC acquired at different times. Furthermore, Vif sequences harbored by patient Y contained the identical mutation. These observations suggest that polymorphic HIV-1 was transmitted to patient X perinatally 15 years previously and has been maintained since that time. Recombinant HIV-1, engineered with Vif sequences from patient X, replicated in PBMC to levels approximately 20-fold lower than that of wild type. Removal of the insertion mutation from this recombinant restored replication efficiency to wild-type levels, while introduction of the insertion mutation into wild-type Vif sequences resulted in greatly decreased replication. Furthermore, Vif protein from patient X's HIV-1 was aberrantly cleaved, suggesting a mechanism for loss of Vif function. Since HIV-1 containing these sequences replicates poorly, the implication is that the two-amino-acid insertion mutation in Vif contributes significantly to the nonprogressor status of this mother and child. Further studies of these sequences might provide information regarding contributions of Vif structure and/or function to HIV-1 virulence.

1999 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David E. Ott ◽  
Elena N. Chertova ◽  
Laura K. Busch ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi ◽  
...  

ABSTRACT The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


1995 ◽  
Vol 39 (4) ◽  
pp. 998-1002 ◽  
Author(s):  
J Balzarini ◽  
M Baba ◽  
E De Clercq

A series of 23 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives that were highly potent inhibitors of wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1/IIIB) replication in CEM cells were evaluated against a panel of HIV-1 mutant strains containing the replacement of leucine by isoleucine at position 100 (100-Leu-->Ile), 103-Lys-->Asn, 106-Val-->Ala, 138-Glu-->Lys, 181-Tyr-->Cys, 181-Tyr-->Ile, or 188-Tyr-->His in their reverse transcriptase (RT). A different structure-antiviral activity relationship was found, depending on the nature of the mutated amino acid in the HIV-1 RT. The results show that 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylbenzyl)uracil, 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)uracil, and 5-ethyl-1-ethoxymethyl-6-(3,5-dimethylphenylthio)-2-thiouracil remain active against the majority of viruses containing single mutations which confer resistance to nonnucleoside RT inhibitors.


2001 ◽  
Vol 75 (14) ◽  
pp. 6321-6328 ◽  
Author(s):  
Paul L. Boyer ◽  
Hong-Qiang Gao ◽  
Patrick K. Clark ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
...  

ABSTRACT When human immunodeficiency virus type 1 (HIV-1) is selected for resistance to 3TC, the methionine normally present at position 184 is replaced by valine or isoleucine. Position 184 is the X of the conserved YXDD motif; positions 185 and 186 form part of the triad of aspartic acids at the polymerase active site. Structural and biochemical analysis of 3TC-resistant HIV-1 reverse transcriptase (RT) led to a model in which a β-branched amino acid at position 184 would act as a steric gate. Normal deoxynucleoside triphosphates (dNTPs) could still be incorporated; the oxathiolane ring of 3TCTP would clash with the β branch of the amino acid at position 184. This model can also explain 3TC resistance in feline immunodeficiency virus and human hepatitis B virus. However, it has been reported (14) that murine leukemia viruses (MLVs) with valine (the amino acid present in the wild type), isoleucine, alanine, serine, or methionine at the X position of the YXDD motif are all resistant to 3TC. We prepared purified wild-type MLV RT and mutant MLV RTs with methionine, isoleucine, and alanine at the X position. The behavior of these RTs was compared to those of wild-type HIV-1 RT and of HIV-1 RT with alanine at the X position. If alanine is present at the X position, both MLV RT and HIV-1 RT are relatively resistant to 3TCTP in vitro. However, the mutant enzymes were impaired relative to their wild-type counterparts; there appears to be steric hindrance for both 3TCTP and normal dNTPs.


2007 ◽  
Vol 82 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Mamoru Fujiwara ◽  
Junko Tanuma ◽  
Hirokazu Koizumi ◽  
Yuka Kawashima ◽  
Kazutaka Honda ◽  
...  

ABSTRACT There is much evidence that in human immunodeficiency virus type 1 (HIV-1)-infected individuals, strong cytotoxic T lymphocyte (CTL)-mediated immune pressure results in the selection of HIV-1 mutants that have escaped from wild-type-specific CTLs. If escape mutant-specific CTLs are not elicited in new hosts sharing donor HLA molecules, the transmission of these mutants results in the accumulation of escape mutants in the population. However, whether escape mutant-specific CTLs are definitively not elicited in new hosts sharing donor HLA molecules still remains unclear. A previous study showed that a Y-to-F substitution at the second position (2F) of the Nef138-10 epitope is significantly detected in HLA-A*2402+ hemophilic donors. Presently, we confirmed that this 2F mutant was an escape mutant by demonstrating strong and weak abilities of Nef138-10-specific CTL clones to suppress replication of the wild-type and 2F mutant viruses, respectively. We demonstrated the existence of the 2F-specific CTLs in three new hosts who had been primarily infected with the 2F mutant. The 2F-specific CTL clones suppressed the replication of both wild-type and mutant viruses. However, the abilities of these clones to suppress replication of the 2F virus were much weaker than those of wild-type-specific and the 2F-specific ones to suppress replication of the wild-type virus. These findings indicate that the 2F mutant is conserved in HIV-1-infected donors having HLA-A*2402, because the 2F-specific CTLs failed to completely suppress the 2F mutant replication and effectively prevented viral reversion in new hosts carrying HLA-A*2402.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2007 ◽  
Vol 51 (8) ◽  
pp. 2701-2708 ◽  
Author(s):  
Hirotomo Nakata ◽  
Masayuki Amano ◽  
Yasuhiro Koh ◽  
Eiichi Kodama ◽  
Guangwei Yang ◽  
...  

ABSTRACT We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 μM [3H]EFdA or [3H]3′-azido-2′,3′-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.6 pmol/109 cells, while that of AZT was 396.5 pmol/109 cells. When CEM cells were exposed to 10 μM [3H]EFdA, the amount of EFdA-TP increased by 22-fold (2,090 pmol/109 cells), while the amount of [3H]AZT-TP increased only moderately by 2.4-fold (970 pmol/109 cells). The intracellular half-life values of EFdA-TP and AZT-TP were ∼17 and ∼3 h, respectively. When MT-4 cells were cultured with 0.01 μM EFdA for 24 h, thoroughly washed to remove EFdA, further cultured without EFdA for various periods of time, exposed to HIV-1NL4-3, and cultured for an additional 5 days, the protection values were 75 and 47%, respectively, after 24 and 48 h with no drug incubation, while those with 1 μM AZT were 55 and 9.2%, respectively. The 50% inhibitory concentration values of EFdA-TP against human polymerases α, β, and γ were >100 μM, >100 μM, and 10 μM, respectively, while those of ddA-TP were >100 μM, 0.2 μM, and 0.2 μM, respectively. These data warrant further development of EFdA as a potential therapeutic agent for those patients who harbor wild-type HIV-1 and/or multidrug-resistant variants.


2004 ◽  
Vol 85 (6) ◽  
pp. 1463-1469 ◽  
Author(s):  
Amanda Brown ◽  
Shaghayegh Moghaddam ◽  
Thomas Kawano ◽  
Cecilia Cheng-Mayer

The human immunodeficiency virus type 1 (HIV-1) Nef protein has been shown to accelerate viral growth kinetics in primary human T-lymphocytes and macrophages; however, the specific function(s) of Nef responsible for this phenotype in macrophages is unknown. To address this issue, mutants of a molecularly cloned macrophage-tropic isolate, HIV-1SF162, were generated expressing single point mutations that abrogate the ability of Nef to interact with cellular kinases or mediate CD4 down-regulation. Infection of primary monocyte-derived macrophages (MDM) with these mutant viruses revealed that residues in the PXXP motif contribute to efficient replication. Interestingly, viruses expressing alleles of Nef defective in CD4 down-modulation activity retain wild-type levels of infectivity in single-round assays but exhibited delayed replication kinetics and grew to lower titres compared to the wild-type virus in MDM. These data suggest that efficient HIV-1 replication is dependent on the ability of Nef to interact with cellular kinases and remove CD4 from the surface of infected macrophages.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


1996 ◽  
Vol 40 (6) ◽  
pp. 1454-1466 ◽  
Author(s):  
J Balzarini ◽  
W G Brouwer ◽  
D C Dao ◽  
E M Osika ◽  
E De Clercq

A large variety of carboxanilide and thiocarboxanilide derivatives in which the original oxathiin or aliphatic moieties present in the prototype compounds UC84 and UC38 were replaced by an (un) substituted furanyl, thienyl, phenyl, or pyrrole entity have been evaluated for activity against wild-type human immunodeficiency virus type 1 strain IIIB [HIV-1 (IIIB)] and a series of mutant virus strains derived thereof. The mutant viruses contained either the Leu-100-->Ile, Lys-103-->Asn, Val-106-->Ala, Glu-138-->Lys, Tyr-181-->Cys, or Tyr-188-->Leu mutation in their reverse transcriptase. Several 3-(2-methylfuranyl)- and 3-(2-methylthienyl)-thiocarboxanilide ester, (thio)ether, and oxime ether derivatives showed exquisitely potent antiviral activity against wild-type HIV-1 (50% effective concentration, 0.009 to 0.021 microM). The pentenylethers of the 2-methylfuranyl and 2-methylthienyl derivatives (i.e., 313, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]- 2-methyl-3-furancarbothioamide or UC-781, and 314, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl] -2-methyl-3-thiophenecarbothioamide or UC-82) proved virtually equally inhibitory for wild-type and the Ile-100, Ala-106, and Lys-138 mutant virus strains (50% effective concentration, 0.015 to 0.021 microM). Their inhibitory effect against the Asn-103 and Cys-181 reverse transcriptase mutant virus strains was decreased only four- to sevenfold compared with wildtype virus. UC-781 and UC-82 should be considered potential candidate drugs for the treatment of HIV-1-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document