scholarly journals Efficient Concerted Integration by Recombinant Human Immunodeficiency Virus Type 1 Integrase without Cellular or Viral Cofactors

2002 ◽  
Vol 76 (7) ◽  
pp. 3105-3113 ◽  
Author(s):  
Sapna Sinha ◽  
Michael H. Pursley ◽  
Duane P. Grandgenett

ABSTRACT Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At ∼30 nM IN (20 min at 37°C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of ∼70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (∼125 μg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.

2000 ◽  
Vol 74 (6) ◽  
pp. 2594-2602 ◽  
Author(s):  
Geethanjali Dornadula ◽  
Shicheng Yang ◽  
Roger J. Pomerantz ◽  
Hui Zhang

ABSTRACT Virion infectivity factor (Vif) is a protein encoded by human immunodeficiency virus type I (HIV-1) and is essential for viral replication. It appears that Vif functions in the virus-producing cells and affects viral assembly. Viruses with defects in the vifgene (vif−) generated from the “nonpermissive cells” are not able to complete reverse transcription. In previous studies, it was demonstrated that defects in the vif gene also affect endogenous reverse transcription (ERT) when mild detergents were utilized to permeabilize the viral envelope. In this report, we demonstrate that defects in the vif gene have much less of an effect on ERT if detergent is not used. When ERT was driven by addition of deoxyribonucleoside triphosphates (dNTPs) at high concentrations, certain levels of plus-strand viral DNA could also be achieved. Interestingly, if vif− viruses, generated from nonpermissive cells and harboring large quantities of viral DNA generated by ERT, were allowed to infect permissive cells, they could partially bypass the block at intracellular reverse transcription, through which vif− viruses without dNTP treatment could not pass. Consequently, viral infectivity can be partially rescued from the vif− phenotype. Based on our observations, we suggest that vif defects may cause the reverse transcription complex (RT complex) to become sensitive to mild detergent treatments within HIV-1 virions and become unstable in the target cells, such that the process of reverse transcription cannot be efficiently supported. Further dissection of RT complexes of vif− viruses may be key to uncovering the molecular mechanism(s) of Vif in HIV-1 pathogenesis.


2005 ◽  
Vol 47 (5) ◽  
pp. 239-246 ◽  
Author(s):  
Edna Maria Vissoci Reiche ◽  
Ana Maria Bonametti ◽  
Maria Angélica Ehara Watanabe ◽  
Helena Kaminami Morimoto ◽  
Arilson Akira Morimoto ◽  
...  

The ability to control human immunodeficiency virus type 1 (HIV-1) infection and progression of the disease is regulated by host and viral factors. This cross-sectional study describes the socio-demographic and epidemiological characteristics associated with HIV-1 infection in 1,061 subjects attended in Londrina and region, south of Brazil: 136 healthy individuals (Group 1), 147 HIV-1-exposed but uninfected individuals (Group 2), 161 HIV-1-infected asymptomatic patients (Group 3), and 617 patients with AIDS (Group 4). Data were obtained by a standardized questionnaire and serological tests. The age of the individuals ranged from 15.1 to 79.5 years, 54.0% and 56.1% of the Groups 3 and 4 patients, respectively, were men. The major features of groups 2, 3, and 4 were a predominance of education level up to secondary school (55.8%, 60.2% and 62.4%, respectively), sexual route of exposure (88.4%, 87.0% and 82.0%, respectively), heterosexual behavior (91.8%, 75.2% and 83.7%, respectively), and previous sexually transmitted diseases (20.4%, 32.5%, and 38.1%, respectively). The patients with AIDS showed the highest rates of seropositivity for syphilis (25.6%), of anti-HCV (22.3%), and anti-HTLV I/II obtained by two serological screening tests (6.2% and 6.8%, respectively). The results documenting the predominant characteristics for HIV-1 infection among residents of Londrina and region, could be useful for the improvement of current HIV-1 prevention, monitoring and therapeutic programs targeted at this population.


1998 ◽  
Vol 72 (6) ◽  
pp. 4678-4685 ◽  
Author(s):  
Meenakshi Gaur ◽  
Andrew D. Leavitt

ABSTRACT The core domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) contains a D,D(35)E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3′-processing and strand transfer activities of purified HIV-1 IN protein. Using a replication-defective viral genome with a hygromycin selectable marker, we recently reported that a mutation at any of the three residues of the D,D(35)E motif produces a 103- to 104-fold reduction in infectious titer compared with virus encoding wild-type IN (A. D. Leavitt et al., J. Virol. 70:721–728. 1996). The infectious titer, as measured by the number of hygromycin-resistant colonies formed following infection of cells in culture, was less than a few hundred colonies per μg of p24. To understand the mechanism by which the mutant virions conferred hygromycin resistance, we characterized the integrated viral DNA in cells infected with virus encoding mutations at each of the three residues of the D,D(35)E motif. We found the integrated viral DNA to be colinear with the incoming viral genome. DNA sequencing of the junctions between integrated viral DNA and host DNA showed that (i) the characteristic 5-bp direct repeat of host DNA flanking the HIV-1 provirus was not maintained, (ii) integration often produced a deletion of host DNA, (iii) integration sometimes occurred without the viral DNA first undergoing 3′-processing, (iv) integration sites showed a strong bias for a G residue immediately adjacent to the conserved viral CA dinucleotide, and (v) mutations at each of the residues of the D,D(35)E motif produced essentially identical phenotypes. We conclude that mutations at any of the three acidic residues of the conserved D,D(35)E motif so severely impair IN activity that most, if not all, integration events by virus encoding such mutations are not IN mediated. IN-independent provirus formation may have implications for anti-IN therapeutic agents that target the IN active site.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


2007 ◽  
Vol 51 (8) ◽  
pp. 2701-2708 ◽  
Author(s):  
Hirotomo Nakata ◽  
Masayuki Amano ◽  
Yasuhiro Koh ◽  
Eiichi Kodama ◽  
Guangwei Yang ◽  
...  

ABSTRACT We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 μM [3H]EFdA or [3H]3′-azido-2′,3′-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.6 pmol/109 cells, while that of AZT was 396.5 pmol/109 cells. When CEM cells were exposed to 10 μM [3H]EFdA, the amount of EFdA-TP increased by 22-fold (2,090 pmol/109 cells), while the amount of [3H]AZT-TP increased only moderately by 2.4-fold (970 pmol/109 cells). The intracellular half-life values of EFdA-TP and AZT-TP were ∼17 and ∼3 h, respectively. When MT-4 cells were cultured with 0.01 μM EFdA for 24 h, thoroughly washed to remove EFdA, further cultured without EFdA for various periods of time, exposed to HIV-1NL4-3, and cultured for an additional 5 days, the protection values were 75 and 47%, respectively, after 24 and 48 h with no drug incubation, while those with 1 μM AZT were 55 and 9.2%, respectively. The 50% inhibitory concentration values of EFdA-TP against human polymerases α, β, and γ were >100 μM, >100 μM, and 10 μM, respectively, while those of ddA-TP were >100 μM, 0.2 μM, and 0.2 μM, respectively. These data warrant further development of EFdA as a potential therapeutic agent for those patients who harbor wild-type HIV-1 and/or multidrug-resistant variants.


2008 ◽  
Vol 82 (17) ◽  
pp. 8900-8905 ◽  
Author(s):  
Sabrina Haupt ◽  
Norbert Donhauser ◽  
Chawaree Chaipan ◽  
Philipp Schuster ◽  
Bridget Puffer ◽  
...  

ABSTRACT Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-α) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-α induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-α production.


2007 ◽  
Vol 81 (22) ◽  
pp. 12189-12199 ◽  
Author(s):  
Krishan K. Pandey ◽  
Sibes Bera ◽  
Jacob Zahm ◽  
Ajaykumar Vora ◽  
Kara Stillmock ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (∼15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3′-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3′-OH processing. It follows that the IN-viral DNA complex is “trapped” by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.


2004 ◽  
Vol 85 (6) ◽  
pp. 1463-1469 ◽  
Author(s):  
Amanda Brown ◽  
Shaghayegh Moghaddam ◽  
Thomas Kawano ◽  
Cecilia Cheng-Mayer

The human immunodeficiency virus type 1 (HIV-1) Nef protein has been shown to accelerate viral growth kinetics in primary human T-lymphocytes and macrophages; however, the specific function(s) of Nef responsible for this phenotype in macrophages is unknown. To address this issue, mutants of a molecularly cloned macrophage-tropic isolate, HIV-1SF162, were generated expressing single point mutations that abrogate the ability of Nef to interact with cellular kinases or mediate CD4 down-regulation. Infection of primary monocyte-derived macrophages (MDM) with these mutant viruses revealed that residues in the PXXP motif contribute to efficient replication. Interestingly, viruses expressing alleles of Nef defective in CD4 down-modulation activity retain wild-type levels of infectivity in single-round assays but exhibited delayed replication kinetics and grew to lower titres compared to the wild-type virus in MDM. These data suggest that efficient HIV-1 replication is dependent on the ability of Nef to interact with cellular kinases and remove CD4 from the surface of infected macrophages.


2008 ◽  
Vol 82 (24) ◽  
pp. 12335-12345 ◽  
Author(s):  
Caroline Goujon ◽  
Vanessa Arfi ◽  
Thomas Pertel ◽  
Jeremy Luban ◽  
Julia Lienard ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIVSM Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIVSM/HIV-2 and SIVRCM Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


Sign in / Sign up

Export Citation Format

Share Document