scholarly journals Production of Human Papillomavirus Type 16 Virus-Like Particles in Transgenic Plants

2003 ◽  
Vol 77 (17) ◽  
pp. 9211-9220 ◽  
Author(s):  
Sophia Biemelt ◽  
Uwe Sonnewald ◽  
Petra Galmbacher ◽  
Lothar Willmitzer ◽  
Martin Müller

ABSTRACT Cervical cancer is linked to infection with human papillomaviruses (HPV) and is the third most common cancer among women worldwide. There is a strong demand for the development of an HPV preventive vaccine. Transgenic plants expressing the HPV major capsid protein L1 could be a system to produce virus-like particles for prophylactic vaccination or could even be used as edible vaccines to induce an L1-specific prophylactic immune response. Here, we describe the generation of transgenic tobacco and potato plants carrying the HPV type 16 major structural gene L1 under the control of the cauliflower mosaic virus 35S promoter. All attempts to express either the original, unmodified L1 gene or an L1 gene with a codon usage optimized for expression in plants failed. Surprisingly, small amounts of the protein were detected using an L1 gene optimized for expression in human cells. However, Northern blot analysis revealed that most of the L1 transcripts were degraded. Introduction of the translational enhancer Ω derived from the tobacco mosaic virus strongly increased transcript stability and resulted in accumulation of L1 protein to approximately 0.5 to 0.2% of total soluble protein in transgenic tobacco and potato plants, respectively. The plant-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles. Furthermore, we did not find any indications of protein modification of the L1 protein produced in plants. Plant-derived L1 was as immunogenic as L1 expressed in baculovirus-infected insect cells. Feeding of tubers from transgenic potatoes to mice induced an anti-L1 antibody response in 3 out of 24 mice, although this response was only transient in two of the mice. Our data, however, indicate that an anti-L1 response was primed in about half of the 24 animals.

1999 ◽  
Vol 12 (5) ◽  
pp. 377-384 ◽  
Author(s):  
Chiara Geri ◽  
Edi Cecchini ◽  
Maria E. Giannakou ◽  
Simon N. Covey ◽  
Joel J. Milner

Cauliflower mosaic virus (CaMV) gene VI protein (P6) is an important determinant of symptom expression. Differential display polymerase chain reaction (PCR) was used to identify changes in gene expression in Arabidopsis elicited by a P6 transgene that causes a symptomatic phenotype. We used slot blot hybridization to measure the abundance of mRNAs complementary to 66 candidate PCR products in transgenic, CaMV-infected, and uninfected Arabidopsis plants. CaMV-infected and P6 transgenic plants showed broadly similar changes in abundance of mRNA species. In P6 transgenic plants we detected 18 PCR products that showed unambiguous changes in abundance plus another 15 that showed more limited changes (approximately twofold). CaMV-infected plants showed 17 unambiguous and 13 limited changes. Down-regulated species include those encoding a novel, phenol-like sulfotransferase, and a glycine-rich, RNA-binding protein. Up-regulated species included ones encoding an myb protein, glycine-rich and stress-inducible proteins, and a member of a previously unreported gene family. CaMV infection causes alterations in expression of many Arabidopsis genes. Transgene-mediated expression of P6 mimics virus infection in its effect on host gene expression, providing a potential mechanism for this process.


1998 ◽  
Vol 38 (4) ◽  
pp. 375 ◽  
Author(s):  
Z. Singh ◽  
M. G. K. Jones ◽  
R. A. C. Jones

Summary. Transgenic tobacco (Nicotiana tabacum) plants of (i) cv. Samsun NN containing the cauliflower mosaic virus 35S constitutive promoter linked to a defective replicase (DR) gene derived from cucumber mosaic virus (CMV) subgroup I isolate Fny, and (ii) cv. Xanthi containing the CaMV 35S promoter linked to the coat protein (CP) gene of CMV subgroup I isolate C were tested for resistance to various Australian isolates of CMV. The tobacco plants were challenged with 3 CMV subgroup 1 isolates (BNRR, BMR and B6) using sap inoculation. When used to challenge non-transgenic tobacco plants with 5 subgroup II CMV isolates from lupins (LY, LCH, LAcc, LGu and LD), this inoculation method did not result in systemic infection so graft inoculation was used instead to challenge transgenic plants with these 5 isolates. When plants of the line with the DR gene were challenged with the 3 subgroup I isolates, extreme resistance was revealed as none showed symptoms and CMV was not detectable by ELISA. When the same 3 isolates were inoculated to the 3 lines with the CP gene, resistance was characterised by fewer plants becoming virus infected, delayed systemic movement and, in the plants that were infected, partial remission of symptoms plus somewhat decreased virus concentration. Challenge of transgenic plants with DR or CP with the 5 subgroup II isolates resulted in fewer plants becoming infected. Actual numbers of plants infected varied with line and subgroup II isolate and the DR gene was as effective as the CP gene at decreasing infection. With subgroup II isolate LY, infection was associated with remission of symptoms and with the other 4 isolates with delayed systemic movement. Thus the DR gene approach was more effective than the CP approach in obtaining extreme resistance against Australian subgroup I isolates of CMV. These results suggest that introducing a similar DR gene construct made from a subgroup II isolate from lupins into commercial lupin cultivars may be a suitable strategy for obtaining extreme resistance to subgroup II isolates from lupins.


1998 ◽  
Vol 11 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Lorant Király ◽  
June E. Bourque ◽  
James E. Schoelz

Cauliflower mosaic virus (CaMV) strain CM1841 is able to recombine with a CaMV transgene sequence present in Nicotiana bigelovii. In the present study we have characterized the temporal and spatial appearance of recombinant viruses formed between CM1841 and the transgene within individual transgenic plants. CM1841 infections were initiated by mechanical inoculation and by agro-inoculation to nontransformed N. bigelovii and transgenic N. bigelovii that expressed the gene VI product of CaMV strain D4. In agroinoculated transgenic plants, inoculated leaf tissue turned necrotic around the point of agroinocu-lation, while chlorotic lesions appeared in the leaves inoculated with CM1841 virions. The first systemic symptoms in both agroinoculated and mechanically inoculated transgenic N. bigelovii consisted of necrotic patches. The predominant type of virus recovered from the inoculated and first systemically infected leaves was the wild-type CM1841 rather than a recombinant. As the infection progressed in the transgenic plants, symptoms changed from necrosis in the lower leaves to a chlorotic mosaic in the upper leaves. This shift in symptom type was associated with the recovery of recombinant viruses, indicating that the recombinants predominated only in later stages of pathogenesis.


2015 ◽  
Vol 81 (4) ◽  
pp. 261-270 ◽  
Author(s):  
Sumyya Waliullah ◽  
Naomi Kosaka ◽  
Takashi Yaeno ◽  
Md. Emran Ali ◽  
Ken-Taro Sekine ◽  
...  

1987 ◽  
Vol 15 (4) ◽  
pp. 1543-1558 ◽  
Author(s):  
P.R. Sanders ◽  
J.A. Winter ◽  
A.R. Barnason ◽  
S.G. Rogers ◽  
R.T. Fraley

2003 ◽  
Vol 16 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Weichang Yu ◽  
Jane Murfett ◽  
James E. Schoelz

The gene VI protein (P6) of Cauliflower mosaic virus (CaMV) functions as a virulence factor in crucifers by eliciting chlorotic symptoms in infected plants. The ability to induce chlorosis has been associated previously with P6 through gene-swapping experiments between strains and through the development of transgenic plants that express P6. The primary role that has been identified for P6 in the CaMV infection cycle is to modify the host translation machinery to facilitate the translation of the polycistronic CaMV 35S RNA. This function for P6 has been designated as the translational transactivator (TAV) function. In the present study, we have characterized an unusual variant of P6, derived from CaMV strain D4, that does not induce chlorosis upon transformation into Arabidopsis thaliana. The level of D4 P6 produced in transgenic Arabidopsis line D4-2 was comparable to the amount found in transgenic plants homozygous for W260 and CM1841 P6, two versions of P6 that induce strong chlorotic symptoms and stunting in Arabidopsis. A complementation assay proved that P6 expressed in the D4-2 line was functional, as it could support the systemic infection of a CM1841 mutant that contained a lethal frame-shift mutation within gene VI. This complementation assay allowed us to separately assess the contribution of CM1841 gene VI to symptom development versus the contribution of other CM1841 genes. Furthermore, a previous study had shown that the TAV activity of D4 P6 was comparable to that of W260 P6. That comparative analysis of TAV function, coupled with the characterization of the D4-2 transgenic line in the present paper, indicates that the TAV function of P6 may play only a minor role in the development of chlorotic symptoms.


Sign in / Sign up

Export Citation Format

Share Document