scholarly journals Selection for Loss of Ref1 Activity in Human Cells Releases Human Immunodeficiency Virus Type 1 from Cyclophilin A Dependence during Infection

2004 ◽  
Vol 78 (21) ◽  
pp. 12066-12070 ◽  
Author(s):  
David M. Sayah ◽  
Jeremy Luban

ABSTRACT Capsid (CA)-specific restrictions are determinants of retroviral tropism in mammalian cells. One such restriction, human Ref1, targets strains of murine leukemia virus bearing an arginine at CA residue 110 (N-MLV), resulting in decreased accumulation of viral cDNA. The cellular factors accounting for Ref1 activity are unknown. As2O3 increases N-MLV titer in Ref1-positive cells, possibly by counteracting Ref1. Restriction factor saturation experiments suggest that Ref1 may also target human immunodeficiency virus type 1 (HIV-1), but only if its CA is not bound to the cellular protein cyclophilin A (CypA). As a step towards understanding the genetic determinants of Ref1, we subjected Ref1-positive TE671 cells to three sequential rounds of selection with N-MLV reporter viruses. We isolated a subclone, 17H1, that was permissive for N-MLV infection and therefore deficient in Ref1 activity. Stimulation of N-MLV replication by As2O3 was attenuated in 17H1, confirming that the drug acts by overcoming Ref1 activity. HIV-1 infection of 17H1 cells was resistant to disruption of the CA-CypA interaction, demonstrating that Ref1 restricts CypA-free HIV-1. Our results suggest that interaction with CypA evolved to protect HIV-1 from this human antiviral activity.

2006 ◽  
Vol 80 (6) ◽  
pp. 2855-2862 ◽  
Author(s):  
Elena Sokolskaja ◽  
Lionel Berthoux ◽  
Jeremy Luban

ABSTRACT Cyclophilin A (CypA), a cytoplasmic, human immunodeficiency virus type 1 (HIV-1) CA-binding protein, acts after virion membrane fusion with human cells to increase HIV-1 infectivity. HIV-1 CA is similarly greeted by CypA soon after entry into rhesus macaque or African green monkey cells, where, paradoxically, the interaction decreases HIV-1 infectivity by facilitating TRIM5α-mediated restriction. These observations conjure a model in which CA recognition by the human TRIM5α orthologue is precluded by CypA. Consistent with the model, selection of a human cell line for decreased restriction of the TRIM5α-sensitive, N-tropic murine leukemia virus (N-MLV) rendered HIV-1 transduction of these cells independent of CypA. Additionally, HIV-1 virus-like particles (VLPs) saturate N-MLV restriction activity, particularly when the CA-CypA interaction is disrupted. Here the effects of CypA and TRIM5α on HIV-1 restriction were examined directly. RNA interference was used to show that endogenous human TRIM5α does indeed restrict HIV-1, but the magnitude of this antiviral activity was not altered by disruption of the CA-CypA interaction or by elimination of CypA protein. Conversely, the stimulatory effect of CypA on HIV-1 infectivity was completely independent of human TRIM5α. Together with previous reports, these data suggest that CypA protects HIV-1 from an unknown antiviral activity in human cells. Additionally, target cell permissivity increased after loading with heterologous VLPs, consistent with a common saturable target that is epistatic to both TRIM5α and the putative CypA-regulated restriction factor.


2004 ◽  
Vol 78 (10) ◽  
pp. 5423-5437 ◽  
Author(s):  
Christopher M. Owens ◽  
Byeongwoon Song ◽  
Michel J. Perron ◽  
Peter C. Yang ◽  
Matthew Stremlau ◽  
...  

ABSTRACT In cells of Old World and some New World monkeys, dominant factors restrict human immunodeficiency virus type 1 (HIV-1) infections after virus entry. The simian immunodeficiency virus SIVmac is less susceptible to these restrictions, a property that is determined largely by the viral capsid protein. For this study, we altered exposed amino acid residues on the surface of the HIV-1 capsid, changing them to the corresponding residues found on the SIVmac capsid. We identified two distinct pathways of escape from early, postentry restriction in monkey cells. One set of mutants that were altered near the base of the cyclophilin A-binding loop of the N-terminal capsid domain or in the interdomain linker exhibited a decreased ability to bind the restricting factor(s). Consistent with the location of this putative factor-binding site, cyclophilin A and the restricting factor(s) cooperated to achieve the postentry block. A second set of mutants that were altered in the ridge formed by helices 3 and 6 of the N-terminal capsid domain efficiently bound the restricting factor(s) but were resistant to the consequences of factor binding. These results imply that binding of the simian restricting factor(s) is not sufficient to mediate the postentry block to HIV-1 and that SIVmac capsids escape the block by decreases in both factor binding and susceptibility to the effects of the factor(s).


2009 ◽  
Vol 83 (16) ◽  
pp. 8289-8292 ◽  
Author(s):  
Emily J. Platt ◽  
Miroslawa Bilska ◽  
Susan L. Kozak ◽  
David Kabat ◽  
David C. Montefiori

ABSTRACT The TZM-bl cell line that is commonly used to assess neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) was recently reported to be contaminated with an ecotropic murine leukemia virus (MLV) (Y. Takeuchi, M. O. McClure, and M. Pizzato, J. Virol. 82:12585-12588, 2008), raising questions about the validity of results obtained with this cell line. Here we confirm this observation and show that HIV-1 neutralization assays performed with a variety of serologic reagents in a similar cell line that does not harbor MLV yield results that are equivalent to those obtained in TZM-bl cells. We conclude that MLV contamination has no measurable effect on HIV-1 neutralization when TZM-bl cells are used as targets for infection.


2002 ◽  
Vol 76 (7) ◽  
pp. 3221-3231 ◽  
Author(s):  
Hsu-Chen Chiu ◽  
Szu-Yung Yao ◽  
Chin-Tien Wang

ABSTRACT Incorporation of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol into virions is thought to be mediated by the N-terminal Gag domain via interaction with the Gag precursor. However, one recent study has demonstrated that the murine leukemia virus Pol can be incorporated into virions independently of Gag-Pol expression, implying a possible interaction between the Pol and Gag precursor. To test whether the HIV-1 Pol can be incorporated into virions on removal of the N-terminal Gag domain and to define sequences required for the incorporation of Gag-Pol into virions in more detail, a series of HIV Gag-Pol expression plasmids with various extensive deletions in the region upstream of the reverse transcriptase (RT) domain was constructed, and viral incorporation of the Gag-Pol deletion mutants was examined by cotransfecting 293T cells with a plasmid expressing Pr55 gag . Analysis indicated that deletion of the N-terminal two-thirds of the gag coding region did not significantly affect the incorporation of Gag-Pol into virions. In contrast, Gag-Pol proteins with deletions covering the capsid (CA) major homology regions and the adjacent C-terminal CA regions were impaired with respect to assembly into virions. However, Gag-Pol with sequences deleted upstream of the protease, or of the RT domain but retaining 15 N-terminal gag codons, could still be rescued into virions at a level about 20% of the wild-type level. When assayed in a nonmyristylated Gag-Pol context, all of the Gag-Pol deletion mutants were incorporated into virions at a level comparable to their myristylated counterparts, suggesting that the incorporation of the Gag-Pol deletion mutants into virions is independent of the N-terminal myristylation signal.


2002 ◽  
Vol 76 (9) ◽  
pp. 4671-4677 ◽  
Author(s):  
Andrew C. S. Saphire ◽  
Michael D. Bobardt ◽  
Philippe A. Gallay

ABSTRACT Cyclophilin A (CypA) is necessary for effective human immunodeficiency virus type 1 (HIV-1) replication. However, the functions of CypA and the precise steps at which CypA acts in the HIV-1 life cycle remain to be determined. By using a methodology that bypasses the need for attachment factors—spinoculation—we present evidence that CypA participates in both entry and postentry events.


2004 ◽  
Vol 78 (4) ◽  
pp. 1843-1850 ◽  
Author(s):  
Mahfuz Khan ◽  
Lingling Jin ◽  
Ming Bo Huang ◽  
Lesa Miles ◽  
Vincent C. Bond ◽  
...  

ABSTRACT The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.


2008 ◽  
Vol 82 (24) ◽  
pp. 12049-12059 ◽  
Author(s):  
Min Wei ◽  
Yiliang Yang ◽  
Meijuan Niu ◽  
Laurie Desfosse ◽  
Robert Kennedy ◽  
...  

ABSTRACT Attempts to use the mouse as a model system for studying AIDS are stymied by the multiple blocks to human immunodeficiency virus type 1 (HIV-1) replication that exist in mouse cells at the levels of viral entry, transcription, and Gag assembly and processing. In this report, we describe an additional block in the selective packaging of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} into HIV-1 produced in murine cells. HIV-1 and murine leukemia virus (MuLV) use \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} and tRNAPro, respectively, as primers for reverse transcription. Selective packaging of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} into HIV-1 produced in human cells is much stronger than that for tRNAPro incorporation into MuLV produced in murine cells, and different packaging mechanisms are used. Thus, both lysyl-tRNA synthetase and GagPol are required for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} packaging into HIV-1, but neither prolyl-tRNA synthetase nor GagPol is required for tRNAPro packaging into MuLV. In this report, we show that when HIV-1 is produced in murine cells, the virus switches from an HIV-1-like incorporation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} to an MuLV-like packaging of tRNAPro. The primer binding site in viral RNA remains complementary to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} , resulting in a significant decrease in reverse transcription and infectivity. Reduction in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} incorporation occurs even though both murine lysyl-tRNA synthetase and HIV-1 GagPol are packaged into the HIV-1 produced in murine cells. Nevertheless, the murine cell is able to support the select incorporation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} into another retrovirus that uses \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} as a primer, the mouse mammary tumor virus.


2003 ◽  
Vol 77 (20) ◽  
pp. 11193-11200 ◽  
Author(s):  
Terence Rhodes ◽  
Heather Wargo ◽  
Wei-Shau Hu

ABSTRACT One of the genetic consequences of packaging two copies of full-length viral RNA into a single retroviral virion is frequent recombination during reverse transcription. Many of the currently circulating strains of human immunodeficiency virus type 1 (HIV-1) are recombinants. Recombination can also accelerate the generation of multidrug-resistant HIV-1 and therefore presents challenges to effective antiviral therapy. In this study, we determined that HIV-1 recombination rates with markers 1.0, 1.3, and 1.9 kb apart were 42.4, 50.4, and 47.4% in one round of viral replication. Because the predicted recombination rate of two unlinked markers is 50%, we conclude that markers 1 kb apart segregated in a manner similar to that for two unlinked markers in one round of retroviral replication. These recombination rates are exceedingly high even among retroviruses. Recombination rates of markers separated by 1 kb are 4 and 4.7% in one round of spleen necrosis virus and murine leukemia virus replication, respectively. Therefore, HIV-1 recombination can be 10-fold higher than that of other retroviruses. Recombination can be observed only in the proviruses derived from heterozygous virions that contain two genotypically different RNAs. The high rates of HIV-1 recombination observed in our studies also indicate that heterozygous virions are formed efficiently during HIV-1 replication and most HIV-1 virions are capable of undergoing recombination. Our results demonstrate that recombination is an effective mechanism to break the genetic linkage between neighboring sequences, thereby reassorting the HIV-1 genome and increasing the diversity in the viral population.


2002 ◽  
Vol 76 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Margaret Reed ◽  
Roberto Mariani ◽  
Liana Sheppard ◽  
Katja Pekrun ◽  
Nathaniel R. Landau ◽  
...  

ABSTRACT Murine cells do not support efficient assembly and release of human immunodeficiency virus type 1 (HIV-1) virions. HIV-1-infected mouse cells that express transfected human cyclin T1 synthesize abundant Gag precursor polyprotein, but inefficiently assemble and release virions. This assembly defect may result from a failure of the Gag polyprotein precursor to target to the cell membrane. Plasma membrane targeting of the precursor is mediated by the amino-terminal region of polyprotein. To compensate for the assembly block, we substituted the murine leukemia virus matrix coding sequences into an infectious HIV-1 clone. Transfection of murine fibroblasts expressing cyclin T1 with the chimeric proviruses resulted in viruses that were efficiently assembled and released. Chimeric viruses, in which the cytoplasmic tail of the transmembrane subunit, gp41, was truncated to prevent potential interference between the envelope glycoprotein and the heterologous matrix, could infect human and murine cells. They failed to further replicate in the murine cells, but replicated with delayed kinetics in human MT-4 cells. These findings may be useful for establishing a murine model for HIV-1 replication.


2002 ◽  
Vol 76 (5) ◽  
pp. 2255-2262 ◽  
Author(s):  
Andrew C. S. Saphire ◽  
Michael D. Bobardt ◽  
Philippe A. Gallay

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.


Sign in / Sign up

Export Citation Format

Share Document