scholarly journals Caveola-Dependent Endocytic Entry of Amphotropic Murine Leukemia Virus

2005 ◽  
Vol 79 (16) ◽  
pp. 10776-10787 ◽  
Author(s):  
Christiane Beer ◽  
Ditte S. Andersen ◽  
Aleksandra Rojek ◽  
Lene Pedersen

ABSTRACT Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t ≈5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.

1985 ◽  
Vol 5 (5) ◽  
pp. 1073-1083
Author(s):  
P J Johnson ◽  
P M Coussens ◽  
A V Danko ◽  
D Shalloway

NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.


Virology ◽  
1988 ◽  
Vol 165 (2) ◽  
pp. 518-526 ◽  
Author(s):  
Yoshiyuki Kuchino ◽  
Susumu Nishimura ◽  
Heinz C. Schröder ◽  
Michael Rottmann ◽  
Werner E.G. Müller

Virology ◽  
2018 ◽  
Vol 518 ◽  
pp. 377-384 ◽  
Author(s):  
Stefano Boi ◽  
Morgan E. Ferrell ◽  
Ming Zhao ◽  
Kim J. Hasenkrug ◽  
Leonard H. Evans

Author(s):  
H. Yeger ◽  
V. I. Kalnins ◽  
J. R. Stephenson

Selected conditional-lethal mutants of mammalian leukemia virus have been used in an ultrastructural study to investigate type-C virus assembly at the cell membrane. Several temperature-sensitive (ts) mutants of Rauscher murine leukemia virus (R-MuLV) have been previously isolated and characterized by biochemical methods and electron microscopy. Biochemical analysis of one particular class of these mutants, the Class II ts mutants, which are defective in late replication functions, indicates that they are defective in cleavage of the gag-gene coded polypeptide precursor, Pr65, of the viral structural proteins at the non-permissive temperature. Because of this defect, NIH/3T3 cells infected with the Class II mutants, ts24, ts25, and ts29 produce very low levels of virus at the non-permissive temperature as compared to wt infected cells.


1990 ◽  
Vol 10 (12) ◽  
pp. 6512-6523 ◽  
Author(s):  
B A Sullenger ◽  
T C Lee ◽  
C A Smith ◽  
G E Ungers ◽  
E Gilboa

NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies.


1990 ◽  
Vol 10 (12) ◽  
pp. 6512-6523
Author(s):  
B A Sullenger ◽  
T C Lee ◽  
C A Smith ◽  
G E Ungers ◽  
E Gilboa

NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies.


Sign in / Sign up

Export Citation Format

Share Document