apobec3 expression
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3313-3313
Author(s):  
Zhiquan Wang ◽  
Huihuang Yan ◽  
Justin C. Boysen ◽  
Charla R. Secreto ◽  
Esteban Braggio ◽  
...  

Abstract Introduction: CLL is the most common leukemia in the U.S. and characterized by constitutively activated BCR signaling pathway, which has a crucial role both in normal B cell development and B cell malignancies. The biological events controlled by BCR signaling in CLL are not fully understood. Active BCR signaling is mediated through activation of the downstream kinase Bruton tyrosine kinase (BTK), which has become a key therapeutic target to inhibit BCR signaling for the treatment of B cell malignancies. We reasoned that blood samples from CLL patients before and after Bruton's tyrosine kinase inhibitors (BTKi) treatment would provide a valuable resource in the study of BCR modulation of epigenetic machinery in leukemic B cells. Methods: We obtained blood samples from CLL patients before and after BTKi ibrutinib treatment and used them to study BCR signaling regulated genes (n = 8 patients, after one-year of continuous ibrutinib treatment). Gene expression profile of CLL B cells from patients before and after one-year ibrutinib treatment was analyzed by mRNA-seq seq. Genome wide Histone H3K4me1, H3K27ac, and H3K4me3 profile was determined by CUT&tag. Chromatin accessibility was determined by ATAC-seq. Putative enhancers were deleted by CRISPR-Cas9. Results: Notably BTKi treatment led to the reduction of expression in genes associated with single strand DNA deamination (Fig. 1A) The BTKi regulated genes involved in this process mainly contains the APOBEC3 family genes (APOBEC3C, APOBEC3D APOBEC3F, APOBEC3G, APOBEC3H), and their expression levels showed a consistent reduction in CLL B cells from ibrutinib treated patients (Fig. 1B). We then confirmed the reduction of APOBEC3 levels by western blot in CLL B cells from four patients before and after one-year of continuous ibrutinib treatment (Fig. 1C). We hypothesized that BCR signaling regulates APOBEC3 expression by modifying the local chromatin around the APOBEC3 gene cluster and performed CUT&Tag to map the histone marks including H3K4me1, H3K4me3, H3K27ac and ATAC-seq. This approach permitted us to examine the chromatin accessibility of the leukemic cells from CLL patients before and then after one-year of continuous ibrutinib treatment. We found that BTKi treatment caused reductions of H3K4me1, H3K27ac, and chromatin accessibility at these regions in ibrutinib treated patients ( 7 of the 8 samples tested), however, there was no change of the promoter marker H3K4me3 (Fig. 1D), which indicated that BTKi treatment leads to APOBEC3 genes expression change via the regulation of their enhancer regulation (APOBEC3 enhancers, AEs). Based on the enrichment of H3K4me1, H3K27ac and chromatin accessibility, AE regions of the ibrutinib native samples contain three active enhancer modules, we designated these modules as AE1, AE2, and AE3 (Fig. 1D). To assess the functional activity of these enhancers on the expression of APOBEC3 genes, we investigated the consequence of deletion of each one of these AEs in the MEC1 cell line by CRISPR-Cas9. PCR analysis showed very robust deletion of AE1, AE2, and AE3 (Fig. 1E). Both deletion of AE1 or AE2 reduced the expression of APOBEC3 genes, while AE3 deletion suppressed the expression of APBEC3C, APOBEC3D, APOBEC3F and APOBEC3G, but not APOBEC3H, which is in closest proximity to AE3 (Fig. 1F, G). Together, we identified the BCR signaling dependent enhancers that regulate APOBEC3 expression. Since APOBEC3 deaminates ssDNA, we reasoned that APOBEC3 in CLL B cells may also contribute to replication stress and DNA instability. We found that MEC1 cells have a high level of spontaneous DNA damage in the S phase cells (Fig. 1H). which is associated with replication stress. However, AE2 deleted MEC cells showed decreased γH2Ax in the S phase cells (Fig. 1H). Edu/PI assay showed that MEC1 cells had a fraction of S phase cells with low Edu incorporation during S phase, also indicating DNA replication stress (Fig. 1I); however, AE2 deletion greatly increased Edu incorporation (Fig. 1I). Taken together, these data suggest that increased expression of APOBEC3 may be involved in DNA replication stress and drives genomic instability in malignant B cells. Conclusion: We demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in CLL B cells, implicating BCR signaling as a potential regulator of leukemic genomic instability. Figure 1 Figure 1. Disclosures Parikh: Pharmacyclics, MorphoSys, Janssen, AstraZeneca, TG Therapeutics, Bristol Myers Squibb, Merck, AbbVie, and Ascentage Pharma: Research Funding; Pharmacyclics, AstraZeneca, Genentech, Gilead, GlaxoSmithKline, Verastem Oncology, and AbbVie: Membership on an entity's Board of Directors or advisory committees. Kay: AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Genentech: Research Funding; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sunesis: Research Funding; Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees; Targeted Oncology: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Research Funding; Behring: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; TG Therapeutics: Research Funding; Tolero Pharmaceuticals: Research Funding; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; CytomX Therapeutics: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Author(s):  
Zhiquan Wang ◽  
Huihuang Yan ◽  
Justin C. Boysen ◽  
Charla R. Secreto ◽  
Jian Zhong ◽  
...  

Constitutively activated B cell receptor (BCR) signaling is a primary biological feature of chronic lymphocytic leukemia (CLL). The biological events controlled by BCR signaling in CLL are not fully understood and need investigation. To make inroads we obtained blood samples from CLL patients before and after Bruton's tyrosine kinase inhibitors (BTKi) treatment and used them to study BCR signaling regulated genes. Here, by analysis of the chromatin states and gene expression profiles of CLL B cells from patients before and after BTKi ibrutinib treatment, we show that BTKi treatment leads to a decreased expression of APOBEC3 family genes in an enhancer regulation dependent manner. BTKi treatment reduces enrichment of enhancer markers (H3K4me1, H3K27ac) and chromatin accessibility at putative APOBEC3 enhancers. CRISPR-Cas9 directed deletion or inhibition of the putative APOBEC3 enhancers leads to reduced APOBEC3 expression. We further find that transcription factor NFATc1 couples BCR signaling with the APOBEC3 enhancer activity to control APOBEC3 expression. Importantly, enhancer regulated APOBEC3 expression contributes to replication stress in malignant B cells. We also demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in a NFATc1 dependent manner, implicating BCR signaling as a potential regulator of leukemic genomic instability.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200188
Author(s):  
Milaid Granadillo Rodríguez ◽  
Ben Flath ◽  
Linda Chelico

Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse ‘off-target’ cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC ‘off-target’ activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.


Virology ◽  
2018 ◽  
Vol 518 ◽  
pp. 377-384 ◽  
Author(s):  
Stefano Boi ◽  
Morgan E. Ferrell ◽  
Ming Zhao ◽  
Kim J. Hasenkrug ◽  
Leonard H. Evans

2017 ◽  
Vol 103 (3) ◽  
pp. 433-444 ◽  
Author(s):  
Daniela Angela Covino ◽  
Maria Cristina Gauzzi ◽  
Laura Fantuzzi

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e106078 ◽  
Author(s):  
Ziqing Wang ◽  
Yi Luo ◽  
Qiujia Shao ◽  
Ballington L. Kinlock ◽  
Chenliang Wang ◽  
...  

2009 ◽  
Vol 50 (9) ◽  
pp. 4436 ◽  
Author(s):  
Haotian Lin ◽  
Zhenping Zhang ◽  
Hui Zhang ◽  
Pisong Yan ◽  
Qilin Wang ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Gang Peng ◽  
Teresa Greenwell-Wild ◽  
Salvador Nares ◽  
Wenwen Jin ◽  
Ke Jian Lei ◽  
...  

HIV-1 recognition by, interaction with, and/or infection of CD4+CCR5+ tissue macrophages and dendritic cells (DCs) play important roles in HIV-1 transmission and pathogenesis. By comparison, circulating CD4+CCR5+ monocytes appear relatively resistant to HIV-1, and a fundamental unresolved question involves deciphering restriction factors unique to this precursor population. Not only do monocytes, relative to macrophages, possess higher levels of the innate resistance factor APOBEC3G, but we uncovered APOBEC3A, not previously associated with anti-HIV activity, as being critical in monocyte resistance. Inversely correlated with susceptibility, silencing of APOBEC3A renders monocytes vulnerable to HIV-1. Differences in promiscuity of monocytes, macrophages, and DCs can be defined, at least partly, by disparities in APOBEC expression, with implications for enhancing cellular defenses against HIV-1.


Sign in / Sign up

Export Citation Format

Share Document