scholarly journals A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

mBio ◽  
2012 ◽  
Vol 3 (2) ◽  
Author(s):  
Seung-Hyun Cho ◽  
Derek Parsonage ◽  
Casey Thurston ◽  
Rachel J. Dutton ◽  
Leslie B. Poole ◽  
...  

ABSTRACTTheEscherichia colimembrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochromecbiogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria andChlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. UsingCaulobacter crescentusas a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm.IMPORTANCEPeroxides are reactive oxygen species (ROS) that damage cellular components such as lipids, proteins, and nucleic acids. The presence of protection mechanisms against ROS is essential for cell survival. Bacteria express cytoplasmic catalases and thiol-dependent peroxidases to directly scavenge harmful peroxides. We report the identification of a peroxide reduction pathway active in the periplasm ofCaulobacter crescentus, which reveals that, in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. The electrons required for peroxide reduction are delivered to this pathway by ScsB, a new type of membrane electron transporter. We also identified two additional likely ScsB substrates, including a novel protein disulfide isomerase. Our results reveal that the array of proteins involved in reductive pathways in the oxidative environment of the cell envelope is significantly broader than was previously thought.

2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Yongguo Cao ◽  
Connor Rosen ◽  
Gunjan Arora ◽  
Akash Gupta ◽  
Carmen J. Booth ◽  
...  

ABSTRACT Borrelia burgdorferi causes Lyme disease, the most common tick-transmitted illness in North America. When Ixodes scapularis feed on an infected vertebrate host, spirochetes enter the tick gut along with the bloodmeal and colonize the vector. Here, we show that a secreted tick protein, I. scapularis protein disulfide isomerase A3 (IsPDIA3), enhances B. burgdorferi colonization of the tick gut. I. scapularis ticks in which ispdiA3 has been knocked down using RNA interference have decreased spirochete colonization of the tick gut after engorging on B. burgdorferi-infected mice. Moreover, administration of IsPDIA3 antiserum to B. burgdorferi-infected mice reduced the ability of spirochetes to colonize the tick when feeding on these animals. We show that IsPDIA3 modulates inflammatory responses at the tick bite site, potentially facilitating spirochete survival at the vector-host interface as it exits the vertebrate host to enter the tick gut. These data provide functional insights into the complex interactions between B. burgdorferi and its arthropod vector and suggest additional targets to interfere with the spirochete life cycle.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
ByungHyun Kim ◽  
TingTing Jiang ◽  
Jun-Hyun Bae ◽  
Hye Su Yun ◽  
Seong Han Jang ◽  
...  

ABSTRACT Upon microbial infection, host immune cells recognize bacterial cell envelope components through cognate receptors. Although bacterial cell envelope components function as innate immune molecules, the role of the physical state of the bacterial cell envelope (i.e., particulate versus soluble) in host immune activation has not been clearly defined. Here, using two different forms of the staphylococcal cell envelope of Staphylococcus aureus RN4220 and USA300 LAC strains, we provide biochemical and immunological evidence that the particulate state is required for the effective activation of host innate immune responses. In a murine model of peritoneal infection, the particulate form of the staphylococcal cell envelope (PCE) induced the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and CC chemokine ligand 2 (CCL2), the chemotactic cytokines for neutrophils and monocytes, respectively, resulting in a strong influx of the phagocytes into the peritoneal cavity. In contrast, compared with PCE, the soluble form of cell envelope (SCE), which was derived from PCE by treatment with cell wall-hydrolyzing enzymes, showed minimal activity. PCE also induced the secretion of calprotectin (myeloid-related protein 8/14 [MRP8/14] complex), a phagocyte-derived antimicrobial protein, into the peritoneal cavity at a much higher level than did SCE. The injected PCE particles were phagocytosed by the infiltrated neutrophils and monocytes and then delivered to mediastinal draining lymph nodes. More importantly, intraperitoneally (i.p.) injected PCE efficiently protected mice from S. aureus infection, which was abolished by the depletion of either monocytes/macrophages or neutrophils. This study demonstrated that the physical state of bacterial cells is a critical factor for efficient host immune activation and the protection of hosts from staphylococcal infections.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99914 ◽  
Author(s):  
Hongyu Han ◽  
Hui Dong ◽  
Shunhai Zhu ◽  
Qiping Zhao ◽  
Lianlian Jiang ◽  
...  

2016 ◽  
Vol 76 (11) ◽  
pp. 3340-3350 ◽  
Author(s):  
Sergei Vatolin ◽  
James G. Phillips ◽  
Babal K. Jha ◽  
Shravya Govindgari ◽  
Jennifer Hu ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Kimberly C. Lemmer ◽  
François Alberge ◽  
Kevin S. Myers ◽  
Alice C. Dohnalkova ◽  
Ryan E. Schaub ◽  
...  

ABSTRACT Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism. In the facultative alphaproteobacterium Rhodobacter sphaeroides, loss of the two-component system NtrYX results in increased lipid production and sensitivity to some known cell envelope-active compounds. In this study, we show that NtrYX directly controls multiple properties of the cell envelope. We find that the response regulator NtrX binds upstream of cell envelope genes, including those involved in peptidoglycan biosynthesis and modification and in cell division. We show that loss of NtrYX impacts the cellular levels of peptidoglycan precursors and lipopolysaccharide and alters cell envelope structure, increasing cell length and the thickness of the periplasm. Cell envelope function is also disrupted in the absence of NtrYX, resulting in increased outer membrane permeability. Based on the properties of R. sphaeroides cells lacking NtrYX and the target genes under direct control of this two-component system, we propose that NtrYX plays a previously undescribed, and potentially conserved, role in the assembly, structure, and function of the cell envelope in a variety of bacteria. IMPORTANCE The bacterial cell envelope provides many important functions. It protects cells from harsh environments, serves as a selective permeability barrier, houses bioenergetic functions, defines sensitivity to antibacterial agents, and plays a crucial role in biofilm formation, symbiosis, and virulence. Despite the important roles of this cellular compartment, we lack a detailed understanding of the biosynthesis and remodeling of the cell envelope. Here, we report that the R. sphaeroides two-component signaling system NtrYX is a previously undescribed regulator of cell envelope processes, providing evidence that it is directly involved in controlling transcription of genes involved in cell envelope assembly, structure, and function in this and possibly other bacteria. Thus, our data report on a newly discovered process used by bacteria to assemble and remodel the cell envelope.


2020 ◽  
Author(s):  
Maria Araceli Diaz Cruz ◽  
Sandra Karlsson ◽  
Ferenc Szekeres ◽  
Maria Faresjö ◽  
Dan Lund ◽  
...  

Abstract The authors have withdrawn this preprint due to author disagreement.


2012 ◽  
Vol 12 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Kevin J. Schwartz ◽  
Ronald F. Peck ◽  
James D. Bangs

ABSTRACT Trypanosoma brucei protein disulfide isomerase 2 (TbPDI2) is a bloodstream stage-specific lumenal endoplasmic reticulum (ER) glycoprotein. ER localization is dependent on the TbPDI2 C-terminal tetrapeptide (KQDL) and is mediated by TbERD2, an orthologue of the yeast ER retrieval receptor. Consistent with this function, TbERD2 localizes prominently to ER exit sites, and RNA interference (RNAi) knockdown results in specific secretion of a surrogate ER retention reporter, BiPN:KQDL. TbPDI2 is highly N-glycosylated and is reactive with tomato lectin, suggesting the presence of poly- N -acetyllactosamine modifications, which are common on lyso/endosomal proteins in trypanosomes but are inconsistent with ER localization. However, TbPDI2 is reactive with tomato lectin immediately following biosynthesis—far too rapidly for transport to the Golgi compartment, the site of poly- N -acetyllactosamine addition. TbPDI2 also fails to react with Erythrina cristagalli lectin, confirming the absence of terminal N -acetyllactosamine units. We propose that tomato lectin binds the Manβ1-4GlcNAcβ1-4GlcNAc trisaccharide core of paucimannose glycans on both newly synthesized and mature TbPDI2. Consistent with this proposal, α-mannosidase treatment renders oligomannose N -glycans on the T. brucei cathepsin L orthologue TbCatL reactive with tomato lectin. These findings resolve contradictory evidence on the location and glycobiology of TbPDI2 and provide a cautionary note on the use of tomato lectin as a poly- N -acetyllactosamine-specific reagent.


Gene ◽  
2002 ◽  
Vol 284 (1-2) ◽  
pp. 225-231 ◽  
Author(s):  
Zheng-Jun Xu ◽  
Kenji Ueda ◽  
Kiyoshi Masuda ◽  
Michiyuki Ono ◽  
Masayasu Inoue

2003 ◽  
Vol 278 (47) ◽  
pp. 47079-47088 ◽  
Author(s):  
Dianne C. Sullivan ◽  
Lucasz Huminiecki ◽  
John W. Moore ◽  
Joseph J. Boyle ◽  
Richard Poulsom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document