scholarly journals A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Satish K. Dhingra ◽  
Devasha Redhi ◽  
Jill M. Combrinck ◽  
Tomas Yeo ◽  
John Okombo ◽  
...  

ABSTRACT Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. IMPORTANCE The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance. IMPORTANCE The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Iyabo Adepeju Simon-Oke ◽  
Adeola Olanireti Ade-Alao ◽  
Foluso Ologundudu

Abstract Background The study evaluated the prevalence of malaria and Plasmodium falciparum chloroquine resistance transporter gene (PfCRT) in HIV patients attending Specialist Hospital, Akure. This study was carried out between April and June 2019. Three hundred and seventeen (317) patients attending the antiretroviral clinic (ART) were involved, out of which 89 (28.08%) were males and 228 (71.92%) were females. HIV test was done using the Unigold® HIV test kit, malaria test was done using thick and thin blood smear, CD4 test was done using the Partec® CD4 counter and PCR was used to detect the presence of plasmodium falciparum mutant gene. The data obtained from this analysis was subjected to Pearson’s Chi-square test. Results The overall result showed low prevalence of malaria (23.03%) in the sampled patients. Highest malaria prevalence (31.0%) was recorded in HIV patients with CD4 count between 200–500 cells/μl of blood, with the males recording 24.7% malaria prevalence. The age group 20–29 years recorded the highest prevalence of 27.3%. A higher prevalence 91.1% of PfCRT gene in HIV-positive and (40.0%) in HIV-negative patients was recorded with 100% prevalence in patients with CD4 count ≤ 200. This shows that the low prevalence of malaria recorded in this study could be credited to good health-seeking attitude of HIV patients and the upscale of HIV care and treatment centres. Conclusion The high prevalence of PfCRT gene shows that treatment of malaria with chloroquine is still being practised despite the availability of artemisinin-based combination therapy (ACTs) as the recommended regimen for malaria treatment.


Author(s):  
Lina Chen ◽  
Zhongyuan Zheng ◽  
Hui Liu ◽  
Xi Wang ◽  
Shuiqing Qu ◽  
...  

Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation, with artemisinin combination therapies as the first-line treatments. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach.


2013 ◽  
Vol 12 (1) ◽  
pp. 426 ◽  
Author(s):  
Maha A ElBadry ◽  
Alexandre Existe ◽  
Yves S Victor ◽  
Gladys Memnon ◽  
Mark Fukuda ◽  
...  

2012 ◽  
Vol 56 (5) ◽  
pp. 2283-2289 ◽  
Author(s):  
Rowena E. Martin ◽  
Alice S. Butterworth ◽  
Donald L. Gardiner ◽  
Kiaran Kirk ◽  
James S. McCarthy ◽  
...  

ABSTRACTThe antiretroviral protease inhibitors (APIs) ritonavir, saquinavir, and lopinavir, used to treat HIV infection, inhibit the growth ofPlasmodium falciparumat clinically relevant concentrations. Moreover, it has been reported that these APIs potentiate the activity of chloroquine (CQ) against this parasitein vitro. The mechanism underlying this effect is not understood, but the degree of chemosensitization varies between the different APIs and, with the exception of ritonavir, appears to be dependent on the parasite exhibiting a CQ-resistant phenotype. Here we report a study of the role of theP. falciparumchloroquine resistance transporter (PfCRT) in the interaction between CQ and APIs, using transgenic parasites expressing different PfCRT alleles and using theXenopus laevisoocyte system for the heterologous expression of PfCRT. Our data demonstrate that saquinavir behaves as a CQ resistance reverser and that this explains, at least in part, its ability to enhance the effects of CQ in CQ-resistantP. falciparumparasites.


Sign in / Sign up

Export Citation Format

Share Document