transgenic parasites
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Oriana Kreutzfeld ◽  
Josephine Grützke ◽  
Alyssa Ingmundson ◽  
Katja Müller ◽  
Kai Matuschewski

Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.


2021 ◽  
Vol 22 (22) ◽  
pp. 12592
Author(s):  
Miriam Algarabel ◽  
Celia Fernández-Rubio ◽  
Katerina Musilova ◽  
José Peña-Guerrero ◽  
Andrés Vacas ◽  
...  

Leishmaniasis is a neglected tropical disease caused by Leishmania spp. The improvement of existing treatments and the discovery of new drugs remain ones of the major goals in control and eradication of this disease. From the parasite genome, we have identified the homologue of the human oncogene PES1 in Leishmania major (LmjPES). It has been demonstrated that PES1 is involved in several processes such as ribosome biogenesis, cell proliferation and genetic transcription. Our phylogenetic studies showed that LmjPES encodes a highly conserved protein containing three main domains: PES N-terminus (shared with proteins involved in ribosomal biogenesis), BRCT (found in proteins related to DNA repair processes) and MAEBL-type domain (C-terminus, related to erythrocyte invasion in apicomplexan). This gene showed its highest expression level in metacyclic promastigotes, the infective forms; by fluorescence microscopy assay, we demonstrated the nuclear localization of LmjPES protein. After generating mutant parasites overexpressing LmjPES, we observed that these clones displayed a dramatic increase in the ratio of cell infection within macrophages. Furthermore, BALB/c mice infected with these transgenic parasites exhibited higher footpad inflammation compared to those inoculated with non-overexpressing parasites.


2021 ◽  
Author(s):  
Sambamurthy Chandrasekaran ◽  
Joshua A Kochanowsky ◽  
Emily F Merritt ◽  
Anita A Koshy

Dogma holds that Toxoplasma gondii persists in neurons because neurons cannot clear intracellular parasites, even with IFN-γ stimulation. As several recent studies questioned this idea, we used primary murine neuronal cultures from wild-type and transgenic mice in combination with IFN-γ stimulation and parental and transgenic parasites to reassess IFN-γ dependent neuronal clearance of intracellular parasites. We found that neurons respond to IFN-γ and that a subset of neurons clear intracellular parasites via immunity regulated GTPases. Whole neuron reconstructions from mice infected with parasites that trigger neuron GFP expression only after full invasion revealed that ~40% of these T. gondii-invaded neurons no longer harbor parasites. Finally, IFN-γ stimulated human stem cell derived neurons showed a ~ 50% decrease in parasite infection rate when compared to unstimulated cultures. This work highlights the capability of human and murine neurons to mount cytokine-dependent anti-T. gondii defense mechanisms in vitro and in vivo.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009864
Author(s):  
Archie A. Khan ◽  
Harry C. Langston ◽  
Fernanda C. Costa ◽  
Francisco Olmo ◽  
Martin C. Taylor ◽  
...  

Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. The mechanism of pathogenesis is poorly understood and the lack of a robust, predictive animal model has held back research. We screened a series of mouse models using gastrointestinal tracer assays and in vivo infection imaging systems to discover a subset exhibiting chronic digestive transit dysfunction and significant retention of faeces in both sated and fasted conditions. The colon was a specific site of both tissue parasite persistence, delayed transit and dramatic loss of myenteric neurons as revealed by whole-mount immunofluorescence analysis. DCD mice therefore recapitulated key clinical manifestations of human disease. We also exploited dual reporter transgenic parasites to home in on locations of rare chronic infection foci in the colon by ex vivo bioluminescence imaging and then used fluorescence imaging in tissue microdomains to reveal co-localisation of infection and enteric nervous system lesions. This indicates that long-term T. cruzi-host interactions in the colon drive DCD pathogenesis, suggesting that the efficacy of anti-parasitic chemotherapy against chronic disease progression warrants further pre-clinical investigation.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 791
Author(s):  
Sixin Zhang ◽  
Xinming Tang ◽  
Si Wang ◽  
Fangyun Shi ◽  
Chunhui Duan ◽  
...  

The potential of Eimeria parasites as live vaccine vectors has been reported with successful genetic manipulation on several species like E. tenella, E. mitis and E. necatrix. Among seven Eimeria species infecting chickens, E. acervulina is a highly prevalent, moderately pathogenic species. Thus, it is valuable for the study of transfection and for use as a potential as vaccine vector. In this study, a plasmid containing expression cassette with enhanced yellow fluorescent protein (EYFP), red fluorescent protein (RFP) and 12 copies of extracellular domain of H9N2 avian influenza virus M2 (M2e) protein was used for the transfection. Nucleofected sporozoites were inoculated into birds through wing vein. Recombinant E. acervulina oocysts with 0.1% EYFP+ and RFP+ populations were collected from the feces of the inoculated birds. The fluorescent rate of transgenic parasites reached over 95% after nine successive propagations with a pyrimethamine selection in vivo and fluorescent-activated cell sorting (FACS) of progeny oocysts. The expression of M2e in the transgenic parasites (EaM2e) was confirmed by Western blot and its cytoplasm localization in sporozoites was displayed by an indirect immunofluorescent assay (IFA). Meanwhile, we found that the fecundity of EaM2e was equivalent to that of wild type E. acervulina (EaWT). Taken together, the stable transfection of E. acervulina was successfully established. Future studies will focus on whether transgenic E. acervulina can serve as a live vaccine vector.


2021 ◽  
Author(s):  
Philip M Frasse ◽  
Justin J Miller ◽  
Ebrahim Soleimani ◽  
Jian-She Zhu ◽  
David L Jakeman ◽  
...  

The malaria parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of GPI anchor biosynthesis, the putative phosphomannomutase (EC 5.4.2.8) of the parasites, HAD5 (PF3D7_1017400). We confirm the phosphomannomutase and phosphoglucomutase activity of purified recombinant HAD5. By regulating expression of HAD5 in transgenic parasites, we demonstrate that HAD5 is required for malaria parasite egress and erythrocyte reinvasion. Finally, we determine the three-dimensional crystal structure of HAD5 and identify a substrate analog that specifically inhibits HAD5, compared to orthologous human phosphomannomutases. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition, and that HAD5 has potential as a multi-stage antimalarial target.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharine A. Collins ◽  
Florian Brod ◽  
Rebecca Snaith ◽  
Marta Ulaszewska ◽  
Rhea J. Longley ◽  
...  

AbstractAn effective vaccine would be a valuable tool for malaria control and elimination; however, the leading malaria vaccine in development, RTS,S/AS01, provided only partial protection in a Phase 3 trial. R21 is a next-generation RTS,S-like vaccine. We have previously shown in mice that R21 administered in Matrix-M is highly immunogenic, able to elicit complete protection against sporozoite challenge, and can be successfully administered with TRAP based viral-vectors resulting in enhanced protection. In this study, we developed a novel, GMP-compatible purification process for R21, and evaluated the immunogenicity and protective efficacy of ultra-low doses of both R21 and RTS,S when formulated in AS01. We demonstrated that both vaccines are highly immunogenic and also elicit comparable high levels of protection against transgenic parasites in BALB/c mice. By lowering the vaccine dose there was a trend for increased immunogenicity and sterile protection, with the highest dose vaccine groups achieving the lowest efficacy (50% sterile protection). We also evaluated the ability to combine RTS,S/AS01 with TRAP based viral-vectors and observed concurrent induction of immune responses to both antigens with minimal interference when mixing the vaccines prior to administration. These studies suggest that R21 or RTS,S could be combined with viral-vectors for a multi-component vaccination approach and indicate that low dose vaccination should be fully explored in humans to maximize potential efficacy.


2021 ◽  
Vol 9 (5) ◽  
pp. 1089
Author(s):  
Antonio Luis de O. A. Petersen ◽  
Benjamin Cull ◽  
Beatriz R. S. Dias ◽  
Luana C. Palma ◽  
Yasmin da S. Luz ◽  
...  

The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.


2021 ◽  
Author(s):  
Tsubasa Nishi ◽  
Naoaki Shinzawa ◽  
Masao Yuda ◽  
Shiroh Iwanaga

Abstract The current CRISPR/Cas9 system for Plasmodium falciparum suffers from technical problems caused by plasmid constructs, such as delays in establishing transgenic parasites during drug selection and unexpected integration of circular donor DNA by single-crossover recombination. Although these problems can be solved by using linear donor templates, such an approach requires highly efficient introduction of DNA and rapid completion of recombination because linear DNA is easily lost from the parasites during multiplication. Here, we overcame these problems by developing a highly efficient DNA transfer method and Cas9-expressing parasites. Using our new CRISPR/Cas9 system, transgenic parasites were established in two weeks without any unexpected recombination or off-target mutations. Furthermore, with our system, two genes on different chromosomes were successfully modified in one transfection. Because of its high efficiency and robustness, our new CRISPR/Cas9 system will become a standard technique for genetic engineering of P. falciparum and dramatically advance studies of this parasite.


Author(s):  
Muhammad M. Hasan ◽  
Erin E. Stebbins ◽  
Robert K.M. Choy ◽  
J. Robert Gillespie ◽  
Eugenio L. de Hostos ◽  
...  

The intestinal protozoan Cryptosporidium is a leading cause of diarrheal disease and mortality in young children. There is currently no fully effective treatment for cryptosporidiosis, which has stimulated interest in anticryptosporidial development over the last ∼10 years with numerous lead compounds identified including several tRNA synthetase inhibitors. In this study, we report the results of a dairy calf efficacy trial of the methionyl-tRNA (CpMetRS) synthetase inhibitor 2093 and the spontaneous emergence of drug resistance. Dairy calves experimentally infected with Cryptosporidium parvum initially improved with 2093 treatment, but parasite shedding resumed in two of three calves on treatment day five. Parasites shed by each recrudescent calf had different amino acid altering CpMetRS mutations, coding either an aspartate 243 to glutamate (D243E) or a threonine 246 to isoleucine (T246I) mutation. Transgenic parasites engineered to have either the D243E or T246I CpMetRS mutation using CRISPR/Cas9 grew normally but were highly 2093 resistant; the D243E and T246I mutant expressing parasites respectively had 2093 EC50s of 613- or 128-fold that of transgenic parasites with wild-type CpMetRS. In studies using recombinant enzymes, the D243E and T246I mutations shifted the 2093 IC50 by >170-fold. Structural modeling of CpMetRS based on an inhibitor-bound Trypanosoma brucei MetRS crystal structure suggested that the resistance mutations reposition nearby hydrophobic residues, interfering with compound binding while minimally impacting substrate binding. This is the first report of naturally emerging Cryptosporidium drug resistance, highlighting the need to address the potential for anticryptosporidial resistance and establish strategies to limit its occurrence.


Sign in / Sign up

Export Citation Format

Share Document