scholarly journals A New Quaternary Structure Epitope on Dengue Virus Serotype 2 Is the Target of Durable Type-Specific Neutralizing Antibodies

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
E. N. Gallichotte ◽  
D. G. Widman ◽  
B. L. Yount ◽  
W. M. Wahala ◽  
A. Durbin ◽  
...  

ABSTRACT Dengue virus serotype 2 (DENV2) is widespread and responsible for severe epidemics. While primary DENV2 infections stimulate serotype-specific protective responses, a leading vaccine failed to induce a similar protective response. Using human monoclonal antibodies (hMAbs) isolated from dengue cases and structure-guided design of a chimeric DENV, here we describe the major site on the DENV2 envelope (E) protein targeted by neutralizing antibodies. DENV2-specific neutralizing hMAb 2D22 binds to a quaternary structure epitope. We engineered and recovered a recombinant DENV4 that displayed the 2D22 epitope. DENV2 neutralizing antibodies in people exposed to infection or a live vaccine tracked with the 2D22 epitope on the DENV4/2 chimera. The chimera remained sensitive to DENV4 antibodies, indicating that the major neutralizing epitopes on DENV2 and -4 are at different sites. The ability to transplant a complex epitope between DENV serotypes demonstrates a hitherto underappreciated structural flexibility in flaviviruses, which could be harnessed to develop new vaccines and diagnostics. IMPORTANCE Dengue virus causes fever and dengue hemorrhagic fever. Dengue serotype 2 (DENV2) is widespread and frequently responsible for severe epidemics. Natural DENV2 infections stimulate serotype-specific neutralizing antibodies, but a leading DENV vaccine did not induce a similar protective response. While groups have identified epitopes of single monoclonal antibodies (MAbs), the molecular basis of DENV2 neutralization by polyclonal human immune sera is unknown. Using a recombinant DENV displaying serotype 2 epitopes, here we map the main target of DENV2 polyclonal neutralizing antibodies induced by natural infection and a live DENV2 vaccine candidate. Proper display of the epitope required the assembly of viral envelope proteins into higher-order structures present on intact virions. Despite the complexity of the epitope, it was possible to transplant the epitope between DENV serotypes. Our findings have immediate implications for evaluating dengue vaccines in the pipeline as well as designing next-generation vaccines.

2016 ◽  
Vol 90 (10) ◽  
pp. 5090-5097 ◽  
Author(s):  
William B. Messer ◽  
Boyd L. Yount ◽  
Scott R. Royal ◽  
Ruklanthi de Alwis ◽  
Douglas G. Widman ◽  
...  

ABSTRACTThe four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms.IMPORTANCEDengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays.


2018 ◽  
Vol 14 (2) ◽  
pp. e1006934 ◽  
Author(s):  
Emily N. Gallichotte ◽  
Thomas J. Baric ◽  
Boyd L. Yount ◽  
Douglas G. Widman ◽  
Anna Durbin ◽  
...  

2017 ◽  
Vol 97 (4) ◽  
pp. 1049-1061 ◽  
Author(s):  
Yin-Liang Tang ◽  
Chun-Yu Lin ◽  
Chien-Yu Chiu ◽  
Han-Chung Wu ◽  
Chwan-Chuen King ◽  
...  

2008 ◽  
Vol 16 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Li-wen Qiu ◽  
Biao Di ◽  
Kun Wen ◽  
Xin-shuai Wang ◽  
Wei-hua Liang ◽  
...  

ABSTRACT The dengue virus (DENV) has four distinct serotypes (DENV1, DENV2, DENV3, and DENV4) that require differentiation for effective prevention of morbid diseases. The recently developed DENV1-specific NS1 antigen capture enzyme-linked immunosorbent assay (ELISA) based on the monoclonal antibodies (MAbs) that recognize distinct epitopes on nonstructural protein 1 (NS1) of a specific DENV serotype is convenient and cost-effective, but assays have not yet been developed for DENV serotypes 2 to 4. This paper describes the development and validation of a DENV2-specific NS1 antigen capture ELISA by selection and optimization of the pair of well-characterized MAbs that recognized epitopes specific for DENV2 NS1 from a large panel of MAbs. The DENV2 NS1 ELISA displayed exclusive sensitivity with the DENV2 serotype and did not cross-react with the other three DENV serotypes. The sensitivity and specificity of the DENV2 NS1 ELISA were 83.3% (25/30) and 100% (504/504) when used to test 30 acute-phase serum samples from patients infected with DENV2 identified by virus isolation or reverse transcription-PCR serotyping and 504 serum samples from healthy individuals, respectively. The specificity of this assay was also evaluated using a panel of serum samples which were positive for DENV1, other flaviviruses, and nonflaviviruses; no cross-reactions were observed in these clinical samples. The DENV2 NS1 ELISA was eightfold more sensitive than a commercially available serotype-cross-reactive NS1 ELISA (Panbio Diagnostics, Brisbane, Australia) when the two assays were used to test the DENV2-infected cell culture supernatants in parallel. The Panbio NS1 ELISA displayed variation in sensitivity between DENV serotypes. The DENV2-specific NS1 antigen capture ELISA can be used as a tool for the rapid identification of DENV2 infections.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Usha K. Nivarthi ◽  
Nurgun Kose ◽  
Gopal Sapparapu ◽  
Douglas Widman ◽  
Emily Gallichotte ◽  
...  

ABSTRACT The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses, but these principally recognize only the infecting serotype. An effective vaccine against dengue should elicit long-lasting protective antibody responses to all four serotypes simultaneously. We and others have defined antigenic sites on the envelope (E) protein of viruses of dengue virus serotypes 1, 2, and 3 targeted by human neutralizing antibodies. The epitopes on DENV4 E protein targeted by the human neutralizing antibodies and the mechanisms of serotype 4 neutralization are poorly understood. Here, we report the properties of human antibodies that neutralize dengue virus serotype 4. People exposed to serotype 4 infections or a live attenuated serotype 4 vaccine developed neutralizing antibodies that bound to similar sites on the viral E protein. These studies have provided a foundation for developing and evaluating DENV4 vaccines.


2011 ◽  
Vol 18 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Iris Valdés ◽  
Lázaro Gil ◽  
Yaremis Romero ◽  
Jorge Castro ◽  
Pedro Puente ◽  
...  

ABSTRACTUse of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys. Primed monkeys received one dose of infective DEN-2 and were then vaccinated with the recombinant protein. We found that animals developed a neutralizing antibody response after the infective dose and were notably boosted with a second dose of the chimeric protein 3 months later. The neutralizing antibodies induced were long lasting, and animals also showed the ability to induce a specific cellular response 6 months after the booster dose. As a conclusion, we can state that the domain III region, when it is properly presented as a fusion protein to the immune system, is able to recall the neutralizing antibody response elicited following homologous virus infection in monkeys. Further prime-boost approaches can be performed in a condensed regime combining the chimeric domain III-capsid protein and candidate live attenuated vaccines against DEN-2.


Intervirology ◽  
2015 ◽  
Vol 58 (4) ◽  
pp. 250-259 ◽  
Author(s):  
Maria Maximina B. Moreno-Altamirano ◽  
Oscar Rodríguez-Espinosa ◽  
Oscar Rojas-Espinosa ◽  
Bernardo Pliego-Rivero ◽  
Francisco J. Sánchez-García

2021 ◽  
Vol 118 (37) ◽  
pp. e2100104118
Author(s):  
Ryan J. Malonis ◽  
James T. Earnest ◽  
Arthur S. Kim ◽  
Matthew Angeliadis ◽  
Frederick W. Holtsberg ◽  
...  

Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline–revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.


Sign in / Sign up

Export Citation Format

Share Document