scholarly journals Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Maria Dolores Fernandez-Garcia ◽  
Laurent Meertens ◽  
Maxime Chazal ◽  
Mohamed Lamine Hafirassou ◽  
Ophélie Dejarnac ◽  
...  

ABSTRACTThe live attenuated yellow fever virus (YFV) vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.IMPORTANCEThe yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry pathways. We show that the mutations differentiating the Asibi envelope (E) protein from the 17D E protein, which arose during attenuation, are key determinants for the use of these distinct entry routes. Finally, we demonstrate that 17D binds and enters host cells more efficiently than Asibi. This results in a higher uptake of viral RNA into the cytoplasm and consequently a greater cytokine-mediated antiviral response. Overall, our data provide new insights into the biology of YFV infection and the mechanisms of viral attenuation.

2008 ◽  
Vol 82 (12) ◽  
pp. 6024-6033 ◽  
Author(s):  
Eva Lee ◽  
Mario Lobigs

ABSTRACT The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans.


1992 ◽  
Vol 66 (7) ◽  
pp. 4265-4270 ◽  
Author(s):  
B K Sil ◽  
L M Dunster ◽  
T N Ledger ◽  
M R Wills ◽  
P D Minor ◽  
...  

Virology ◽  
1987 ◽  
Vol 161 (2) ◽  
pp. 474-478 ◽  
Author(s):  
M. Lobigs ◽  
L. Dalgarno ◽  
J.J. Schlesinger ◽  
R.C. Weir

2006 ◽  
Vol 8 (6) ◽  
pp. 1530-1538 ◽  
Author(s):  
Anabelle Lefeuvre ◽  
Hugues Contamin ◽  
Thierry Decelle ◽  
Christophe Fournier ◽  
Jean Lang ◽  
...  

2007 ◽  
Vol 81 (21) ◽  
pp. 11737-11748 ◽  
Author(s):  
Alexandr V. Shustov ◽  
Peter W. Mason ◽  
Ilya Frolov

ABSTRACT Application of genetically modified, deficient-in-replication flaviviruses that are incapable of developing productive, spreading infection is a promising means of designing safe and effective vaccines. Here we describe a two-component genome yellow fever virus (YFV) replication system in which each of the genomes encodes complete sets of nonstructural proteins that form the replication complex but expresses either only capsid or prM/E instead of the entire structural polyprotein. Upon delivery to the same cell, these genomes produce together all of the viral structural proteins, and cells release a combination of virions with both types of genomes packaged into separate particles. In tissue culture, this modified YFV can be further passaged at an escalating scale by using a high multiplicity of infection (MOI). However, at a low MOI, only one of the genomes is delivered into the cells, and infection cannot spread. The replicating prM/E-encoding genome produces extracellular E protein in the form of secreted subviral particles that are known to be an effective immunogen. The presented strategy of developing viruses defective in replication might be applied to other flaviviruses, and these two-component genome viruses can be useful for diagnostic or vaccine applications, including the delivery and expression of heterologous genes. In addition, the achieved separation of the capsid-coding sequence and the cyclization signal in the YFV genome provides a new means for studying the mechanism of the flavivirus packaging process.


2019 ◽  
Vol 25 (8) ◽  
pp. 1567-1570 ◽  
Author(s):  
Paula E.S. Marinho ◽  
Pedro P.M. Alvarenga ◽  
Ana P.C. Crispim ◽  
Talitah M.S. Candiani ◽  
Alice M. Alvarenga ◽  
...  

Virology ◽  
1999 ◽  
Vol 261 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Lee M. Dunster ◽  
Heiman Wang ◽  
Kate D. Ryman ◽  
Barry R. Miller ◽  
Stanley J. Watowich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document