scholarly journals Linear Distance from the Locus Control Region Determines ε-Globin Transcriptional Activity

2007 ◽  
Vol 27 (16) ◽  
pp. 5664-5672 ◽  
Author(s):  
Motoshi Shimotsuma ◽  
Hitomi Matsuzaki ◽  
Osamu Tanabe ◽  
Andrew D. Campbell ◽  
James Douglas Engel ◽  
...  

ABSTRACT Enhancer elements modulate promoter activity over vast chromosomal distances, and mechanisms that ensure restrictive interactions between promoters and enhancers are critical for proper control of gene expression. The human β-globin locus control region (LCR) activates expression of five genes in erythroid cells, including the proximal embryonic ε- and the distal adult β-globin genes. To test for possible distance sensitivity of the genes to the LCR, we extended the distance between the LCR and genes by 2.3 kbp within the context of a yeast artificial chromosome, followed by the generation of transgenic mice (TgM). In these TgM lines, ε-globin gene expression decreased by 90%, while the more distantly located γ- or β-globin genes were not affected. Remarkably, introduction of a consensus EKLF binding site into the ε-globin promoter rendered its expression distance insensitive; when tested in an EKLF-null genetic background, expression of the mutant ε-globin gene was severely compromised. Thus, the ε-globin gene differs in its distance sensitivity to the LCR from the other β-like globin genes, which is, at least in part, determined by the transcription factor EKLF.

2003 ◽  
Vol 23 (24) ◽  
pp. 8946-8952 ◽  
Author(s):  
Keiji Tanimoto ◽  
Akiko Sugiura ◽  
Akane Omori ◽  
Gary Felsenfeld ◽  
James Douglas Engel ◽  
...  

ABSTRACT The human β-globin locus contains five developmentally regulatedβ -type globin genes. All five genes depend on the locus control region (LCR), located at the 5′ end of the locus, for abundant globin gene transcription. The LCR is composed of five DNase I-hypersensitive sites (HSs), at least a subset of which appear to cooperate to form a holocomplex in activating genes within the locus. We previously tested the requirement for proper LCR polarity by inverting it in human β-globin yeast artificial chromosome transgenic mice and observed reduced expression of all theβ -type globin genes regardless of developmental stage. This phenotype clearly demonstrated an orientation-dependent activity of the LCR, although the mechanistic basis for the observed activity was obscure. Here, we describe genetic evidence demonstrating that human HS5 includes enhancer-blocking (insulator) activity that is both CTCF and developmental stage dependent. Curiously, we also observed an attenuating activity in HS5 that was specific to the ε-globin gene at the primitive stage and was independent of the HS5 CTCF binding site. These observations demonstrate that the phenotype observed in the LCR-inverted locus was in part attributable to placing the HS5 insulator between the LCR HS enhancers (HS1 to HS4) and the promoter of the β-globin gene.


1993 ◽  
Vol 90 (23) ◽  
pp. 11207-11211 ◽  
Author(s):  
K R Peterson ◽  
G Zitnik ◽  
C Huxley ◽  
C H Lowrey ◽  
A Gnirke ◽  
...  

We demonstrate that transfer of a yeast artificial chromosome (YAC) containing 230 kb of the human beta-globin locus into mouse erythroleukemia cells by fusion results in correct developmental regulation of the human beta-like globin genes. Additionally, we show that early after hybrid formation, human embryonic epsilon- and fetal gamma-globin genes are coexpressed with the adult beta gene but that after 10-20 weeks in culture, globin gene expression switches to predominantly adult. Thus, in contrast to shorter gene constructs, the globin genes of the beta-globin locus YAC are regulated like the chromosomal globin genes. These results indicate that transfer of YACs into established cell lines can be used for the analysis of the developmental control of multigenic and developmentally regulated human loci.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 703-712 ◽  
Author(s):  
George Vassilopoulos ◽  
Patrick A. Navas ◽  
Evangelia Skarpidi ◽  
Kenneth R. Peterson ◽  
Chris H. Lowrey ◽  
...  

Abstract The function of the β-globin locus control region (LCR) has been studied both in cell lines and in transgenic mice. We have previously shown that when a 248-kb β-locus YAC was first microinjected into L-cells and then transferred into MEL cells by fusion, the YAC loci of the LxMEL hybrids displayed normal expression and developmental regulation.To test whether direct transfer of a β-globin locus (β-YAC) into MEL cells could be used for studies of the function of the LCR, a 155-kb β-YAC that encompasses the entire β-globin locus was used. This YAC was retrofitted with a PGK-neo selectable marker and with two I-PpoI sites at the vector arm-cloned insert junctions, allowing detection of the intact globin loci on a single I-PpoI fragment by pulsed field gel electrophoresis (PFGE). ThePpo-155 β-YAC was used to directly lipofect MEL 585 cells. In 7 β-YAC MEL clones with at least one intact copy of the YAC, the levels of total human globin mRNA (ie, ɛ + γ + β) per copy of integrated β-YAC varied more than 97-fold between clones. These results indicated that globin gene expression was strongly influenced by the position of integration of the β-YAC into the MEL cell genome and suggested that the LCR cannot function properly when the locus is directly transferred into an erythroid cell environment as naked β-YAC DNA. To test whether passage of the β-YAC through L-cells before transfer into MEL cells was the reason for the previously observed correct developmental regulation of human globin genes in the LxMEL hybrid cells, we transfected the YAC into L-cells by lipofection. Three clones carried the intact 144-kb I-PpoI fragment and transcribed the human globin genes with a fetal-like pattern. Subsequent transfer of the YAC of these L(β-YAC) clones into MEL cells by fusion resulted in LxMEL hybrids that synthesized human globin mRNA. The variation in human β-globin mRNA (ie, ɛ + γ + β) levels between hybrids was 2.5-fold, indicating that globin gene expression was independent of position of integration of the transgene, as expected for normal LCR function. The correct function of the LCR when the YAC is first transferred into the L-cell environment raises the possibility that normal activation of the LCR requires interaction with the transcriptional environment of an uncommitted, nonerythroid cell. We propose that the activation of the LCR may represent a multistep process initiated by the binding of ubiquitous transcription factors early during the differentiation of hematopoietic stem cells and completed with the binding of erythroid type of factors in the committed erythroid progenitors.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 703-712 ◽  
Author(s):  
George Vassilopoulos ◽  
Patrick A. Navas ◽  
Evangelia Skarpidi ◽  
Kenneth R. Peterson ◽  
Chris H. Lowrey ◽  
...  

The function of the β-globin locus control region (LCR) has been studied both in cell lines and in transgenic mice. We have previously shown that when a 248-kb β-locus YAC was first microinjected into L-cells and then transferred into MEL cells by fusion, the YAC loci of the LxMEL hybrids displayed normal expression and developmental regulation.To test whether direct transfer of a β-globin locus (β-YAC) into MEL cells could be used for studies of the function of the LCR, a 155-kb β-YAC that encompasses the entire β-globin locus was used. This YAC was retrofitted with a PGK-neo selectable marker and with two I-PpoI sites at the vector arm-cloned insert junctions, allowing detection of the intact globin loci on a single I-PpoI fragment by pulsed field gel electrophoresis (PFGE). ThePpo-155 β-YAC was used to directly lipofect MEL 585 cells. In 7 β-YAC MEL clones with at least one intact copy of the YAC, the levels of total human globin mRNA (ie, ɛ + γ + β) per copy of integrated β-YAC varied more than 97-fold between clones. These results indicated that globin gene expression was strongly influenced by the position of integration of the β-YAC into the MEL cell genome and suggested that the LCR cannot function properly when the locus is directly transferred into an erythroid cell environment as naked β-YAC DNA. To test whether passage of the β-YAC through L-cells before transfer into MEL cells was the reason for the previously observed correct developmental regulation of human globin genes in the LxMEL hybrid cells, we transfected the YAC into L-cells by lipofection. Three clones carried the intact 144-kb I-PpoI fragment and transcribed the human globin genes with a fetal-like pattern. Subsequent transfer of the YAC of these L(β-YAC) clones into MEL cells by fusion resulted in LxMEL hybrids that synthesized human globin mRNA. The variation in human β-globin mRNA (ie, ɛ + γ + β) levels between hybrids was 2.5-fold, indicating that globin gene expression was independent of position of integration of the transgene, as expected for normal LCR function. The correct function of the LCR when the YAC is first transferred into the L-cell environment raises the possibility that normal activation of the LCR requires interaction with the transcriptional environment of an uncommitted, nonerythroid cell. We propose that the activation of the LCR may represent a multistep process initiated by the binding of ubiquitous transcription factors early during the differentiation of hematopoietic stem cells and completed with the binding of erythroid type of factors in the committed erythroid progenitors.


1992 ◽  
Vol 12 (5) ◽  
pp. 2057-2066 ◽  
Author(s):  
B J Morley ◽  
C A Abbott ◽  
J A Sharpe ◽  
J Lida ◽  
P S Chan-Thomas ◽  
...  

The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1596-1596
Author(s):  
Dorothy Tuan ◽  
Xingguo Zhu ◽  
Jianhua Ling ◽  
Ling Zhang ◽  
Wenhu Pi ◽  
...  

Abstract The 100 kb human β-globin gene locus contains the embryonic ε-, the fetal Gγ- and Aγ-, and the adult δ- and β-globin genes arranged in the transcriptional order of 5′ ε-Gγ-Aγ-δ-β 3′. The β-globin Locus Control Region (LCR), defined by DNase I hypersensitive sites HS1, 2, 3, 4 and 5 located far upstream of the globin genes, is absolutely required for transcriptional activation of the globin genes in erythroid cells. The HS2 site, located respectively 11 and 55 kb upstream of the ε- and β-globin genes, possesses prominent enhancer activity and is able to activate transcription of the globin genes over the long distance. How the HS2 enhancer acts over the long distance is not fully understood. Three mechanisms have been proposed to explain long-range enhancer function: The looping model, the protein tracking/linking model and the facilitated tracking model. We have shown earlier that a transcription mechanism of the RNA polymerase II (pol II)-complex assembled by the HS2 enhancer mediates long-range HS2 enhancer function. In the present study, we used the chicken HS4 insulator to further study the mechanism of long-range HS2 enhancer function. We created the LCR(+I) and LCR(−I) lines in human erythroid K562 cells using Cre-loxP mediated in situ recombination and in zebrafish. The integrated LCR(+I) and LCR(−I) plasmids spanned the natural 11 kb human ε-globin gene locus either with or without the chicken HS4 insulator inserted between the LCR HS2 enhancer and the ε-globin promoter. Analysis of enhancer function in the integrated plasmids and the endogenous ε-globin gene locus provided evidence for a novel facilitated tracking and transcription mechanism of long-range enhancer function: The HS2 enhancer complex containing both the enhancer DNA and the associated pol II tracked and transcribed through the 10 kb intervening DNA to loop with and activate the ε-globin promoter. The interposed insulator interrupted this facilitated tracking and transcription mechanism of the enhancer complex through the intervening DNA, thereby blocking long-range enhancer function.


1992 ◽  
Vol 12 (5) ◽  
pp. 2057-2066
Author(s):  
B J Morley ◽  
C A Abbott ◽  
J A Sharpe ◽  
J Lida ◽  
P S Chan-Thomas ◽  
...  

The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 272-272 ◽  
Author(s):  
Leszek Lisowski ◽  
Michel Sadelain

Abstract Globin gene transfer in autologous hematopoietic stem cells is a promising therapeutic option for subjects with β-thalassemia major. In this approach, high level, erythroid specific transgene expression is needed to correct ineffective erythropoiesis and hemolytic anemia following the delivery of few copies of therapeutic vector per cell. Several groups have successfully treated mouse models of severe hemoglobinopathies utilizing lentiviral vectors encoding β- or γ-globin genes placed under the transcriptional control of the human β-globin promoter and the HS2, HS3 and HS4 elements of the β-globin locus control region. The HS2 and HS3 elements are the most powerful and the best characterized single elements within the LCR. The relative importance of HS1 and HS4 is less well defined. We show here the major roles played by HS1 and HS4, which although not seen in MEL cells, are striking in β-thalassemic mice. The effect of HS1 element was tested in vectors, derived from the previously published TNS9 vector, that harbor different globin promoters (either 265, 615 or 1555bp in length). Addition of HS1 to vectors containing the 615bp or 1555bp promoters had no effect on average transgene expression per vector copy (VC) and even decreased average transgene expression from 38±3% (n=32 MEL cell pools) to 26±2% (n=23) of endogenous β-globin levels (p<0.001) in the context of the 265bp promoter. In vivo, however, addition of HS1 had a dramatic effect on globin expression. Transgene expression increased from 27±6% of the endogenous β-globin mRNA to 41±9% for vectors harboring the HS1 element (p<0.001), after normalization to vector copy number. On the Hb level, the vectors without HS1 element provided 4–6g/dl/VC, while addition of HS1 increased this value to 9g/dl/VC. To evaluate the effect of HS4 on gene expression, we created panel of vectors with truncations of 3′ or 5′ flanking regions of HS4. In vectors harboring LCR HS1-4, the 5′ truncation significantly decreased mean in vivo globin expression from 26±2.5% to 20±2% of the endogenous β-globin (p<0.001). A similar effect was observed for 3′ or 5′ truncations in vectors lacking HS1 element. The 5′ flanking region of HS4 was also replaced with an unrelated DNA spacer, the same size fragment of HS3 flanking region, or the human IFN-β S/MAR element. Only the addition of the S/MAR element rescued the function of HS4, restoring average globin expression to the level of vectors encoding the full HS4 element, which suggests that this region may contain a functional S/MAR element. This analysis underscores the importance of carefully analyzing the size and relative positioning of transcriptional control elements within tissue-specific vectors, as well as the critical importance of assessing these elements in animal models of disease. Based on this analysis, we are proceeding to a phase I clinical trial in subjects with β-thalassemia major, utilizing the TNS9.3 vector, which harbors the 615bp human β-globin promoter and HS2–3–4, providing curative levels of hemoglobin at 1 to 2 copies per cell. Addition of HS1 is a promising alternative strategy if higher levels of expression are eventually needed.


Genomics ◽  
2000 ◽  
Vol 63 (3) ◽  
pp. 417-424 ◽  
Author(s):  
Raouf Alami ◽  
M.A. Bender ◽  
Yong-Qing Feng ◽  
Steven N. Fiering ◽  
Bruce A. Hug ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document