scholarly journals Nuclear Jak2 and Transcription Factor NF1-C2: a Novel Mechanism of Prolactin Signaling in Mammary Epithelial Cells

2006 ◽  
Vol 26 (15) ◽  
pp. 5663-5674 ◽  
Author(s):  
Jeanette Nilsson ◽  
Gunnar Bjursell ◽  
Marie Kannius-Janson

ABSTRACT The classical mechanism by which prolactin transduces its signal in mammary epithelial cells is by activation of cytosolic signal transducer and activator of transcription 5 (Stat5) via a plasma membrane-associated prolactin receptor-Janus kinase 2 (Jak2) complex. Here we describe an alternative pathway through which prolactin via Jak2 localized in the nucleus activates the transcription factor nuclear factor 1-C2 (NF1-C2). Previous reports have demonstrated a nuclear localization of Jak2, but the physiologic importance of nuclear Jak2 has not been clear. We demonstrate that nuclear Jak2 regulates the amount of active NF1-C2 through tyrosine phosphorylation and proteasomal degradation. Our data also demonstrate a link between prolactin and p53 as well as the milk gene carboxyl ester lipase through nuclear Jak2 and NF1-C2. Hence, we describe a novel pathway through which nuclear Jak2 is subject to regulation by prolactin in mammary epithelial cells.

2004 ◽  
Vol 24 (12) ◽  
pp. 5548-5564 ◽  
Author(s):  
Jason D. Prescott ◽  
Karen S. N. Koto ◽  
Meenakshi Singh ◽  
Arthur Gutierrez-Hartmann

ABSTRACT Several different transcription factors, including estrogen receptor, progesterone receptor, and ETS family members, have been implicated in human breast cancer, indicating that transcription factor-induced alterations in gene expression underlie mammary cell transformation. ESE-1 is an epithelium-specific ETS transcription factor that contains two distinguishing domains, a serine- and aspartic acid-rich (SAR) domain and an AT hook domain. ESE-1 is abundantly expressed in human breast cancer and trans-activates epithelium-specific gene promoters in transient transfection assays. While it has been presumed that ETS factors transform mammary epithelial cells via their nuclear transcriptional functions, here we show (i) that ESE-1 protein is cytoplasmic in human breast cancer cells; (ii) that stably expressed green fluorescent protein-ESE-1 transforms MCF-12A human mammary epithelial cells; and (iii) that the ESE-1 SAR domain, acting in the cytoplasm, is necessary and sufficient to mediate this transformation. Deletion of transcriptional regulatory or nuclear localization domains does not impair ESE-1-mediated transformation, whereas fusing the simian virus 40 T-antigen nuclear localization signal to various ESE-1 constructs, including the SAR domain alone, inhibits their transforming capacity. Finally, we show that the nuclear localization of ESE-1 protein induces apoptosis in nontransformed mammary epithelial cells via a transcription-dependent mechanism. Together, our studies reveal two distinct ESE-1 functions, apoptosis and transformation, where the ESE-1 transcription activation domain contributes to apoptosis and the SAR domain mediates transformation via a novel nonnuclear, nontranscriptional mechanism. These studies not only describe a unique ETS factor transformation mechanism but also establish a new paradigm for cell transformation in general.


2018 ◽  
Vol 49 (2) ◽  
pp. 479-488 ◽  
Author(s):  
Caihong Wang ◽  
Fengqi Zhao ◽  
Jianxin Liu ◽  
Hongyun Liu

Background/Aims: The aim of this study was to investigate the transport properties and utilization of methionyl-methionine dipeptide (Met-Met) in β-casein (β-CN) synthesis in bovine mammary epithelial cells (BMECs). Methods: The transport properties were studied for the effects of time, pH, concentration, temperature and inhibitors using Met-Met-FITC in BMECs. BMECs were treated with different concentrations of Met-Met (0, 20, 40, 80, 120 and 160 µg/ml). In several experiments, the cells were treated with Janus kinase 2 (JAK2) inhibitor (tyrphostin AG-490, 50 µM) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin, 100 ng/ml). Results: The uptake of Met-Met-FITC by BMECs was rapid during the first fifteen minutes and became saturated after 15 minutes. The transport of Met-Met-FITC in BMECs exhibited a Michaelis constant of 52.4 µM and maximum transport velocity of 14.8 pmol/min/mg protein. The uptake of Met-Met-FITC in BMECs was pH-dependent, peaked at pH 6.5 and was significantly inhibited by other peptides, including Met-Lys, Lys-Lys, Gly-Met, Gly-Leu and Met-Leu. Knocking down the peptide transporter 2 (PepT2) with small interference RNA markedly decreased Met-Met-FITC uptake. Met-Met concentration-dependently increased the PepT2 expression and β-CN synthesis in BMECs with an optimal concentration of 80 µg/ml. At 80 µg/ml, Met-Met also enhanced the cell viability and cyclin D1 expression and promoted cell cycle transition from G1 phase to S phase. In addition, 80 µg/ml Met-Met increased the mRNA abundance of JAK2 and signal transducer and activator of transcription 5 (STAT5) and enhanced the phosphorylation of JAK2, STAT5, mTOR, p70 ribosomal S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1. The inhibition of JAK2 and mTOR significantly decreased Met-Met-induced increase in cell viability and β-CN synthesis in BMECs. Conclusion: Our data elucidated the properties of peptide transporter and its effect on β-CN synthesis in BMECs. Met-Met, taken up by PepT2, enhances cell proliferation and promotes β-CN synthesis by activating JAK2-STAT5 and mTOR signaling pathways in BMECs.


2015 ◽  
Vol 34 (8) ◽  
pp. 534-540 ◽  
Author(s):  
Zhibin Ji ◽  
Fei Dong ◽  
Guizhi Wang ◽  
Lei Hou ◽  
Zhaohua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document