bovine mammary epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

550
(FIVE YEARS 216)

H-INDEX

33
(FIVE YEARS 10)

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Nana Ma ◽  
Guozhen Wei ◽  
Hongzhu Zhang ◽  
Hongyu Dai ◽  
Animesh Chandra Roy ◽  
...  

Lipopolysaccharide (LPS) is the dominating endotoxin of Gram-negative bacteria, which can cause mastitis. Bovine mammary epithelial cells (BMECs), as major components of the mammary gland, usually suffer LPS challenge. Cis-9, trans-11 conjugated linoleic acid (CLA) has been reported to have anti-inflammatory characteristics, while its anti-oxidative ability to maintain cellular homeostasis in BMECs under LPS challenge is limited. Therefore, we studied whether cis-9, trans-11 CLA can restore the disturbance of cellular homeostasis indicated by the redox status and autophagy level caused by LPS and have an effect on cellular function- milk fat metabolism. For oxidative stress, LPS challenge promoted the formation of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and decreased the concentration of glutathione. Anti-oxidative signaling regulated by transcription factor nuclear factor, erythroid 2 like 2 (Nrf2) was also depressed by LPS at the mRNA and protein level. However, cis-9, trans-11 CLA pretreatment downregulated the formation of ROS and TBARS and upregulated the expression of antioxidative enzymes. As a part of innate immunity, autophagy was also motivated by LPS challenge, while CLA decreased the autophagy level. LPS and H2O2 inhibited milk fat synthesis-related transcription factor sterol regulatory element binding protein (SREBP1), peroxisome proliferator activated receptor gamma (PPARG) and their downstream enzymes. Furthermore, 50 uM cis-9, trans-11 CLA promoted the mRNA and protein abundance of milk fat synthesis-related genes and lipid droplet formation in BMECs. In conclusion, LPS challenge disturbed the cellular homeostasis and depressed milk fat synthesis in BMECs; while cis-9, trans-11 CLA alleviated oxidative stress and decreased autophagy level, thus promoting milk fat synthesis, which offers a natural therapeutic strategy for mastitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Songqi Liu ◽  
Wenjin Guo ◽  
Yuxi Jia ◽  
Bojian Ye ◽  
Shu Liu ◽  
...  

Mastitis is one of the most serious diseases that causes losses in the dairy industry, seriously impairing milk production and milk quality, and even affecting human health. Menthol is a cyclic monoterpene compound obtained from the stem and leaves of peppermint, which has a variety of biological activities, including anti-inflammatory and antioxidant activity. The purpose of this study was to investigate the preventive effect of menthol on the lipopolysaccharide-induced inflammatory response in primary bovine mammary gland epithelial cells (BMECs) and its anti-inflammatory mechanism. First, BMECs were isolated and amplified from the udders of Holstein cows by enzymatic hydrolysis. BMECs were treated with menthol (10, 50, 100, 200 μM) for 1h, followed by lipopolysaccharide (5μg/ml) for 12 h. Lipopolysaccharide treatment upregulated the protein levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS) and the mRNA abundance of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), while menthol was able to inhibit this effect. The inhibitory effect of menthol on proinflammatory factors was significantly reduced when autophagy was blocked using 3-Methyladenine (5μg/ml), an inhibitor of autophagy. Furthermore, lipopolysaccharide treatment reduced the expression levels of milk lipids and milk proteins, which were inhibited by menthol. In addition, menthol (200 μM) treatment was able to significantly upregulate the expression level of autophagy-related protein LC3B, downregulate the expression level of P62, promote the expression abundance of autophagy-related gene mRNA, and enhance significantly enhance autophagic flux. Interestingly, treatment of BMECs with menthol (200 μM) promoted the phosphorylation of AMP-activated protein kinase (AMPK) and unc-51 like kinase 1 (ULK1) and increased the nuclear localization of nuclear factor-E2 associated factor 2 (Nrf-2). When the AMPK pathway was blocked using compound C (10μg/ml), an inhibitor of AMPK, autophagy was significantly inhibited. Autophagy levels were significantly decreased after blocking the Nrf-2 pathway using ML385 (5μg/ml), an inhibitor of Nrf-2. Overall, the data suggest that menthol activates the AMPK-ULK1 pathway to initiate the onset of autophagy and maintains the level of autophagy through the AMPK-Nrf-2 pathway. In conclusion, the findings suggest that menthol may alleviate the inflammatory response in BMECs via the AMPK/ULK1/Nrf-2/autophagy pathway.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3426
Author(s):  
Yi-Tian Ying ◽  
Jing Yang ◽  
Xun Tan ◽  
Rui Liu ◽  
Ying Zhuang ◽  
...  

Escherichia coli and Staphylococcus aureus are major mastitis causing pathogens in dairy cattle but elicit distinct immune and an inflammatory response in the udder. However, the host determinants responsible for this difference remains largely unknown. Our initial studies focused on the global transcriptomic response of primary bovine mammary epithelial cells (pbMECs) to heat-killed E. coli and S. aureus. RNA-sequencing transcriptome analysis demonstrates a significant difference in expression profiles induced by E. coli compared with S. aureus. A major differential response was the activation of innate immune response by E. coli, but not by S. aureus. Interestingly, E. coli stimulation increased transcript abundance of several genes downstream of Nrf2 (nuclear factor erythroid 2-related factor 2) that were enriched in gene sets with a focus on metabolism and immune system. However, none of these genes was dysregulated by S. aureus. Western blot analysis confirms that S. aureus impairs Nrf2 activation as compared to E. coli. Using Nrf2-knockdown cells we demonstrate that Nrf2 is necessary for bpMECs to mount an effective innate defensive response. In support of this notion, nuclear Nrf2 overexpression augmented S. aureus-stimulated inflammatory response. We also show that, unlike E. coli, S. aureus disrupts the non-canonical p62/SQSTM1-Keap1 pathway responsible for Nrf2 activation through inhibiting p62/SQSTM1 phosphorylation at S349. Collectively, our findings provide important insights into the contribution of the Nrf2 pathway to the pathogen-species specific immune response in bovine mammary epithelial cells and raise a possibility that impairment of Nrf2 activation contributes to, at least in part, the weak inflammatory response in S. aureus mastitis.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1226
Author(s):  
Yujia Jing ◽  
Yifei Chen ◽  
Shan Wang ◽  
Jialiang Ouyang ◽  
Liangyu Hu ◽  
...  

PER2, a circadian clock gene, is associated with mammary gland development and lipid synthesis in rodents, partly via regulating peroxisome proliferator-activated receptor gamma (PPARG). Whether such a type of molecular link existed in bovines was unclear. We hypothesized that PER2 was associated with lipid metabolism and regulated cell cycles and apoptosis in bovine mammary epithelial cells (BMECs). To test this hypothesis, BMECs isolated from three mid-lactation (average 110 d postpartum) cows were used. The transient transfection of small interfering RNA (siRNA) was used to inhibit PER2 transcription in primary BMECs. The silencing of PER2 led to lower concentrations of cellular lipid droplets and triacylglycerol along with the downregulation of lipogenic-related genes such as ACACA, FASN, LPIN1, and SCD, suggesting an overall inhibition of lipogenesis and desaturation. The downregulation of PPARG and SREBF1 in response to PER2 silencing underscored the importance of circadian clock signaling and the transcriptional regulation of lipogenesis. Although the proliferation of BMECs was not influenced by PER2 silencing, the number of cells in the G2/GM phase was upregulated. PER2 silencing did not affect cell apoptosis. Overall, the data provided evidence that PER2 participated in the coordination of mammary lipid metabolism and was potentially a component of the control of lipid droplets and TAG synthesis in ruminant mammary cells. The present data suggested that such an effect could occur through direct effects on transcriptional regulators.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhao Chen ◽  
Yuze Ma ◽  
Qiang Ji ◽  
Xiaoru Yang ◽  
Xue Feng ◽  
...  

Staphylococcus aureus (S. aureus) is one of the main pathogens in cow mastitis, colonizing mammary tissues and being internalized into mammary epithelial cells, causing intracellular infection in the udder. Milk that is produced by cows that suffer from mastitis due to S. aureus is associated with decreased production and changes in protein composition. However, there is limited information on how mastitis-inducing bacteria affect raw milk, particularly with regard to protein content and protein composition. The main purpose of this work was to examine how S. aureus infection affects milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were infected with S. aureus, and milk protein and amino acid levels were determined by ELISA after S. aureus invasion. The activity of mTORC1 signaling and the transcription factors NF-κB and STAT5 and the expression of the amino acid transporters SLC1A3 and SLC7A5 were measured by western blot or immunofluorescence and RT-qPCR. S. aureus was internalized by BMECs in vitro, and the internalized bacteria underwent intracellular proliferation. Eight hours after S. aureus invasion, milk proteins were downregulated, and the level of BMECs that absorbed Glu, Asp, and Leu from the culture medium and the exogenous amino acids induced β-casein synthesis declined. Further, the activity of mTORC1 signaling, NF-κB, and STAT5 was impaired, and SLC1A3 and SLC7A5 were downregulated. Eight hours of treatment with 100 nM rapamycin inhibited NF-κB and STAT5 activity, SLC1A3 and SLC7A5 expression, and milk protein synthesis in BMECs. Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.


Author(s):  
Tianle Xu ◽  
Run Liu ◽  
Xubin Lu ◽  
Xinyue Wu ◽  
Petr Heneberg ◽  
...  

Abstract As the main component of the gram-negative bacterial cell wall, lipopolysaccharide (LPS) is well-documented as an inducer of inflammation in bovine mammary cells. Lycium barbarum (goji) polysaccharides (LBP) have been used in non-ruminants as prebiotics to improve growth performance, immune ability and antioxidant capacity. We aimed to investigate the underlying effects of LBPs on pro-inflammatory responses in LPS-stimulated primary bovine mammary epithelial cells (bMECs). Cells were isolated from mammary tissue of 3 lactating Holstein cows without clinical disease (30.26 ± 3.1 kg/d of milk yield; 175 ± 6 DIM). For the pre-experimental treatment, bMECs were precultured with serum-free medium for 12 h. Treatments were as follows: pretreatment with culture medium devoid of LPS or LBP for 30 h (CON); CON for 24 h followed by challenge with 2 μg/mL LPS for 6 h (LPS); pretreatment with 100 μg/mL or 300 μg/mL LBP for 24 h followed by LPS challenge (2 μg/mL) for 6 h (LBP(100)+LPS; LBP(300)+LPS). To further determine if the effect of LBP on immune-regulation is PPARγ activation-dependent, an inhibitor of PPARγ, GW9662, at a concentration of 1 μM was used. Cells treated with LBP at 100, 300 and 500 μg/mL had upregulated protein abundance of PPARγ, while PGC1α had a higher expression only at 300 μg/mL of LBP treatment. Compared with CON, cells pretreated with LBP at 100 and 300 μg/mL had greater protein abundance of SCD1 and SREBP1. EdU staining and cell wound healing assays showed that the negative effect of LPS alone on cell proliferation was reversed by pretreatment with LBP at both 100 and 300 μg/mL. Upregulation of gene and protein abundance of proinflammatory factors and cytokines (COX-2, NLRP3, TNF-α, IL-1β and IL-6) induced by LPS stimulation were alleviated by LBP pretreatment at 300 μg/mL (more than 2-fold decrease). Compared with LPS challenge alone, phosphorylation of proteins involved in NF-κB (IκBα and p65) and MAPK (p38, JNK and ERK) pathways was downregulated following LBP treatment. Additionally, inhibition of PPARγ by GW9662 weakened the protective effect of LBP on LPS-induced protein abundance of phosphorylated p65, COX-2, IL-1β and TNF-α. These results indicated that the protective effect of LBP on LPS-induced bMECs inflammatory responses is PPARγ activation-dependent. As such, this knowledge might help design strategies for intervening against the detrimental effects of bovine mastitis.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3238
Author(s):  
Xinlu Liu ◽  
Jinglin Shen ◽  
Jinxin Zong ◽  
Jiayi Liu ◽  
Yongcheng Jin

β-sitosterol, a phytosterol with multiple biological activities, has been used in the pharmaceutical industry. However, there are only a few reports on the use of β-sitosterol in improving milk synthesis in dairy cows. This study aimed to investigate the effects of β-sitosterol on milk fat and protein syntheses in bovine mammary epithelial cells (MAC-T) and its regulatory mechanism. MAC-T cells were treated with different concentrations (0.01, 0.1, 1, 5, 10, 20, 30, or 40 μM) of β-sitosterol, and the expression levels of milk protein and fat synthesis-related genes and proteins were analyzed. β-sitosterol at 0.1, 1, and 10 μM concentrations promoted the mRNA and protein expression of β-casein. β-sitosterol (0.1, 1, 10 μM) increased the mRNA and protein expression levels of signal transducer activator of transcription 5 (STAT5), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta-1 (S6K1) of the JAK2/STAT5 and mTOR signaling pathways. It also stimulated the milk fat synthesis-related factors, including sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and stearyl CoA desaturase (SCD). β-sitosterol (0.1, 1, 10 μM) also significantly increased the expression of growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and hypoxia-inducible factor-1α (HIF-1α)-related genes. Notably, the compound inhibited the expression of the negative regulator, the suppressor of cytokine signaling 2 (SOCS2) at the two lower concentrations (0.1, 1 μM), but significantly promoted the expression at the highest concentration (30 μM). These results highlight the role of β-sitosterol at concentrations ranging from 0.1 to 10 μM in improving milk protein and fat syntheses, regulating milk quality. Therefore, β-sitosterol can be used as a potential feed additive to improve milk quality in dairy cows.


Sign in / Sign up

Export Citation Format

Share Document