scholarly journals Hierarchy of elements regulating synthesis of ribosomal proteins in Saccharomyces cerevisiae.

1981 ◽  
Vol 1 (11) ◽  
pp. 1016-1023 ◽  
Author(s):  
D R Kief ◽  
J R Warner

Saccharomyces cerevisiae cells respond to a heat shock by temporarily slowing the synthesis of ribosomal proteins (C. Gorenstein and J. R. Warner, Proc. Natl. Acad. Sci. U.S.A. 73:1574-1551, 1976). When cultures growing oxidatively on ethanol as the sole carbon source were shifted from 23 to 36 degrees C, the synthesis of ribosomal proteins was coordinately inhibited twice as rapidly and 45% more severely than in comparable cultures growing fermentatively on glucose. Within 15 min, the relative rates of synthesis of at least 30 ribosomal proteins declined to less than one-sixth their initial values, whereas the overall rate of protein synthesis increased at least threefold. We suggest that this is due primarily to controls at the level of synthesis of messenger ribonucleic acid for ribosomal proteins but may also involve changes in messenger ribonucleic acid stability. In contrast, a nutritional shift-up causes a stimulation of the synthesis of ribosomal proteins. Experiments designed to determine the hierarchy of stimuli affecting the synthesis of these proteins demonstrated that temperature shock was dominant to glucose stimulation. When a culture growing on ethanol was shifted from 23 to 36 degrees C and glucose was added shortly afterward, the decline in ribosomal protein synthesis continued unabated. However, in wild-type cells ribosomal protein synthesis began to recover within 15 min. In mutants temperature sensitive for ribosome synthesis, e.g., rna2, there was no recovery in the synthesis of most ribosomal proteins, suggesting that the product of rna2 is essential for the production of these proteins under all vegetative conditions.

1981 ◽  
Vol 1 (11) ◽  
pp. 1016-1023
Author(s):  
D R Kief ◽  
J R Warner

Saccharomyces cerevisiae cells respond to a heat shock by temporarily slowing the synthesis of ribosomal proteins (C. Gorenstein and J. R. Warner, Proc. Natl. Acad. Sci. U.S.A. 73:1574-1551, 1976). When cultures growing oxidatively on ethanol as the sole carbon source were shifted from 23 to 36 degrees C, the synthesis of ribosomal proteins was coordinately inhibited twice as rapidly and 45% more severely than in comparable cultures growing fermentatively on glucose. Within 15 min, the relative rates of synthesis of at least 30 ribosomal proteins declined to less than one-sixth their initial values, whereas the overall rate of protein synthesis increased at least threefold. We suggest that this is due primarily to controls at the level of synthesis of messenger ribonucleic acid for ribosomal proteins but may also involve changes in messenger ribonucleic acid stability. In contrast, a nutritional shift-up causes a stimulation of the synthesis of ribosomal proteins. Experiments designed to determine the hierarchy of stimuli affecting the synthesis of these proteins demonstrated that temperature shock was dominant to glucose stimulation. When a culture growing on ethanol was shifted from 23 to 36 degrees C and glucose was added shortly afterward, the decline in ribosomal protein synthesis continued unabated. However, in wild-type cells ribosomal protein synthesis began to recover within 15 min. In mutants temperature sensitive for ribosome synthesis, e.g., rna2, there was no recovery in the synthesis of most ribosomal proteins, suggesting that the product of rna2 is essential for the production of these proteins under all vegetative conditions.


2014 ◽  
Vol 56 (3) ◽  
pp. 469-483 ◽  
Author(s):  
Stanisław Weidner

Triticale var. Lasko embryos, isolated from grain gathered at milk ripeness, the beginning of wax ripeness and at full ripeness, were allowed to germinate for 48 h on agar with glucose. The highest incorporation of tritiated adenosine into polyribosomal RNA during germination was found in the ribosome fractions from embryos of grain gathered at full ripeness, lower incorporation was in preparations from embryos of milk ripe grain and the lowest in preparations from embryos of wax ripe grain. Different tendencies were observed in respect to the synthesis of ribosomal proteins. The highest incorporation of <sup>14</sup>C-amino acids into ribosomal proteins was found in preparations of ribosome fractions from embryos of milk ripe grain, lower in preparations of embryos from fully ripe grain, the lowest in preparations of embryos from wax ripe grain. ABA (10<sup>-4</sup> M) completely inhibited the external symptoms of germination of immature embryos, while its inhibition of the synthesis of polyribosomal RNA and ribosomal proteins was greater the more mature the embryos that were germinated. The greatest stimulation of precocious germination by exogenous BA and GA<sub>3</sub> was demonstrated in the least mature embryos isolated from milk ripe grain. Under the influence of both stimulators, an increase of the proportion of polyribosomes in the total ribosome fraction occurred in this sample, as did a rise in the intensity of ribosomal protein synthesis. The incorporation of <sup>3</sup>H-adenosine into polyribosomal RNA, however, was lower than in the control sample. The results obtained suggest that the regulation of precocious germination of triticale embryos by phyto-hormones is not directly related to transcription.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243 ◽  
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1988 ◽  
Vol 8 (1) ◽  
pp. 91-95 ◽  
Author(s):  
J Bell ◽  
L Neilson ◽  
M Pellegrini

In Drosophila tissue culture cells, the synthesis of ribosomal proteins was inhibited by a 1-h 37 degrees C heat shock. Ribosomal protein synthesis was repressed to a greater extent than that of most other proteins synthesized by these cells at 25 degrees C. After a 1-h heat shock, when the cells were returned to 25 degrees C, the ribosomal proteins were much slower than most other 25 degrees C proteins to return to pre-heat shock levels of synthesis. Relative to one another, all the ribosomal proteins were inhibited and later recovered to normal levels of synthesis at the same rate and to the same extent. Unlike the ribosomal proteins, the precursor to the large rRNAs was continually synthesized during heat shock, although at a slightly reduced level, but was not processed. It was rapidly degraded, with a half-life of approximately 16 min. Pre-heat shock levels of synthesis, stability, and correct processing were restored only when ribosomal protein synthesis returned to at least 50% of that seen in non-heat-shocked cells.


Sign in / Sign up

Export Citation Format

Share Document