Factors governing the expression of a bacterial gene in mammalian cells

1981 ◽  
Vol 1 (5) ◽  
pp. 449-459
Author(s):  
R C Mulligan ◽  
P Berg

Cultured monkey kidney cells transfected with simian virus 40 (SV40)-pBR322-derived deoxyribonucleic acid (DNA) vectors containing the Escherichia coli gene (Ecogpt, or gpt) coding for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT) synthesize the bacterial enzyme. This paper describes the structure of the messenger ribonucleic acids (mRNA's) formed during the expression of gpt and an unexpected feature of the nucleotide sequence in the gpt DNA segment. Analyses of the gpt-specific mRNA's produced during infection of CV1 cells indicate that in addition to the mRNA's expected on the basis of known simian virus 40 RNA splicing patterns, there is a novel SV40-gpt hybrid mRNA. The novel mRNA contains an SV40 leader segment spliced to RNA sequences transcribed from the bacterial DNA segment. The sequence of the 5'-proximal 345 nucleotides of the gpt DNA segment indicates that the only open translation phase begins with an AUG about 200 nucleotides from the end of the gpt DNA. Two additional AUGs as well as translation terminator codons in all three phases precede the XGPRT initiator codon. Deletion of the two that are upstream of the putative start codon increases the level of XGPRT production in transfected cells; deletion of sequences that contain the proposed XGPRT initiator AUG abolishes enzyme production. Based on the location of the XGPRT coding sequence in the recombinants and the structure of the mRNA's, we infer that the bacterial enzyme can be translated from an initiator AUG that is 400 to 800 nucleotides from the 5' terminus of the mRNA and preceded by two to six AUG triplets.

1981 ◽  
Vol 1 (5) ◽  
pp. 449-459 ◽  
Author(s):  
R C Mulligan ◽  
P Berg

Cultured monkey kidney cells transfected with simian virus 40 (SV40)-pBR322-derived deoxyribonucleic acid (DNA) vectors containing the Escherichia coli gene (Ecogpt, or gpt) coding for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT) synthesize the bacterial enzyme. This paper describes the structure of the messenger ribonucleic acids (mRNA's) formed during the expression of gpt and an unexpected feature of the nucleotide sequence in the gpt DNA segment. Analyses of the gpt-specific mRNA's produced during infection of CV1 cells indicate that in addition to the mRNA's expected on the basis of known simian virus 40 RNA splicing patterns, there is a novel SV40-gpt hybrid mRNA. The novel mRNA contains an SV40 leader segment spliced to RNA sequences transcribed from the bacterial DNA segment. The sequence of the 5'-proximal 345 nucleotides of the gpt DNA segment indicates that the only open translation phase begins with an AUG about 200 nucleotides from the end of the gpt DNA. Two additional AUGs as well as translation terminator codons in all three phases precede the XGPRT initiator codon. Deletion of the two that are upstream of the putative start codon increases the level of XGPRT production in transfected cells; deletion of sequences that contain the proposed XGPRT initiator AUG abolishes enzyme production. Based on the location of the XGPRT coding sequence in the recombinants and the structure of the mRNA's, we infer that the bacterial enzyme can be translated from an initiator AUG that is 400 to 800 nucleotides from the 5' terminus of the mRNA and preceded by two to six AUG triplets.


1985 ◽  
Vol 5 (5) ◽  
pp. 1136-1142
Author(s):  
H Okayama ◽  
P Berg

We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.


1985 ◽  
Vol 5 (5) ◽  
pp. 1136-1142 ◽  
Author(s):  
H Okayama ◽  
P Berg

We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.


1983 ◽  
Vol 3 (2) ◽  
pp. 280-289 ◽  
Author(s):  
H Okayama ◽  
P Berg

This paper describes a plasmid vector for cloning cDNAs in Escherichia coli; the same vector also promotes expression of the cDNA segment in mammalian cells. Simian virus 40 (SV40)-derived DNA segments are arrayed in the pcD vector to permit transcription, splicing, and polyadenylation of the cloned cDNA segment. A DNA fragment containing both the SV40 early region promoter and two introns normally used to splice the virus 16S and 19S late mRNAs is placed upstream of the cDNA cloning site to ensure transcription and splicing of the cDNA transcripts. An SV40 late region polyadenylation sequence occurs downstream of the cDNA cloning site, so that the cDNA transcript acquires a polyadenylated 3' end. By using pcD-alpha-globin cDNA as a model, we confirmed that the alpha-globin transcript produced in transfected cells is initiated correctly, spliced at either of the two introns, and polyadenylated either at the site coded in the cDNA segment or at the distal SV40 polyadenylation signal. A cDNA clone library constructed with mRNA from SV40-transformed human fibroblasts and this vector (about 1.4 X 10(6) clones) yielded full-length cDNA clones that express hypoxanthine-guanine phosphoribosyltransferase (Jolly et al., Proc. Natl. Acad. Sci. U.S.A., in press).


1986 ◽  
Vol 6 (12) ◽  
pp. 4295-4304
Author(s):  
D B Roth ◽  
J H Wilson

Although DNA breakage and reunion in nonhomologous recombination are poorly understood, previous work suggests that short sequence homologies may play a role in the end-joining step in mammalian cells. To study the mechanism of end joining in more detail, we inserted a polylinker into the simian virus 40 T-antigen intron, cleaved the polylinker with different pairs of restriction enzymes, and transfected the resulting linear molecules into monkey cells. Analysis of 199 independent junctional sequences from seven constructs with different mismatched ends indicates that single-stranded extensions are relatively stable in monkey cells and that the terminal few nucleotides are critical for cell-mediated end joining. Furthermore, these studies define three mechanisms for end joining: single-strand, template-directed, and postrepair ligations. The latter two mechanisms depend on homologous pairing of one to six complementary bases to position the junction. All three mechanisms operate with similar overall efficiencies. The relevance of this work to targeted integration in mammalian cells is discussed.


1986 ◽  
Vol 6 (7) ◽  
pp. 2704-2711 ◽  
Author(s):  
D S Peabody ◽  
S Subramani ◽  
P Berg

In a previous report (S. Subramani, R. Mulligan, and P. Berg, Mol. Cell. Biol. 1:854-864, 1981), it was shown that mouse dihydrofolate reductase (DHFR) could be efficiently expressed from simian virus 40 recombinant viruses containing the DHFR cDNA in different locations in the viral late region. This was true even in the case of the SVGT7dhfr26 recombinant, which had the DHFR coding sequence 700 to 800 nucleotides from the 5' end of the mRNA, where it was preceded by the VP2 and VP3 initiator AUGs and a number of other noninitiator AUGs. To investigate the process of internal translation initiation in mammalian cells, we constructed a series of SVGT7dhfr recombinants in which the upstream VP2 and VP3 reading frame was terminated in various positions relative to the DHFR initiation codon. The efficient production of DHFR in infected CV1 cells depended on having the terminators of the VP2-VP3 reading frame positioned upstream or nearby downstream from the DHFR initiation codon. These results reinforce the notion that mammalian ribosomes are capable of translational reinitiation.


1989 ◽  
Vol 9 (10) ◽  
pp. 4364-4371
Author(s):  
C Delsert ◽  
N Morin ◽  
D F Klessig

Expression of the L1 region of adenovirus is temporally regulated by alternative splicing to yield two major RNAs encoding the 52- to 55-kilodalton (52-55K) and IIIa polypeptides. The distal acceptor site (IIIa) is utilized only during the late phase of infection, whereas the proximal site (52-55K) is used at both early and late times. Several parameters that might affect this alternative splicing were tested by using expression vectors carrying the L1 region or mutated versions of it. In the absence of a virus-encoded or -induced factor(s), only the 52-55K acceptor was used. Decreasing the distance between the donor and the IIIa acceptor had no effect. Removal of the 52-55K acceptor induced IIIa splicing slightly, implying competition between the two acceptors. Fusion of the IIIa exon to the 52-55K intron greatly enhanced splicing of the IIIa junction, suggesting that the IIIa exon does not contain sequences that inhibit splicing. Thus, the lack of splicing to the IIIa acceptor in the absence of a virus-encoded or -induced factor(s) is probably due to the absence of a favorable sequence and/or the presence of a negative element 5' of the IIIa splice junction, or both. The presence of several adenovirus gene products, including VA RNAs, the E2A DNA-binding protein, and the products of E1A and E1B genes, did not facilitate use of the IIIa acceptor. In contrast, the simian virus 40 early proteins, probably large T antigen, induced IIIa splicing. This result, together with those of earlier studies, suggest that T antigen plays a role in modulation of alternative RNA splicing.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089 ◽  
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1982 ◽  
Vol 2 (9) ◽  
pp. 1044-1051 ◽  
Author(s):  
C M Gorman ◽  
L F Moffat ◽  
B H Howard

We constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. We also constructed a recombinant, pSV0-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.


Sign in / Sign up

Export Citation Format

Share Document