african green monkey kidney
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jessie J-Y Chang ◽  
Josie Gleeson ◽  
Daniel Rawlinson ◽  
Miranda E Pitt ◽  
Ricardo De Paoli-Iseppi ◽  
...  

Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) combined with the Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analysed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~136 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2, which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.


2021 ◽  
Vol 11 (22) ◽  
pp. 10661
Author(s):  
Jian-Jong Liang ◽  
Chun-Che Liao ◽  
Chih-Shin Chang ◽  
Chih-Yin Lee ◽  
Si-Yu Chen ◽  
...  

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious threat to human health worldwide. The inactivation of SARS-CoV-2 on object surfaces and in the indoor air might help to halt the COVID-19 pandemic. Far-ultraviolet light (UVC) disinfection has been proven to be highly effective against viruses and bacteria. To understand the wavelength and duration of UVC radiation required for SARS-CoV-2 inactivation, we examined the efficacy of UVC light prototype devices with the wavelengths of 275, 254, and 222 nm. The disinfection effectiveness was determined by cell-based assays including the median tissue culture infectious dose (TCID50) and an immunofluorescent assay on African green monkey kidney epithelial Vero E6 cells. Among the three prototypes, the UVC LED (275 nm) had the best virucidal activity with a log-reduction value (LRV) >6 after 10 s of exposure. The mercury lamp (254 nm) reached similar virucidal activity after 20 s of exposure. However, the excimer lamp (222 nm) showed limited anti-SARS-CoV-2 activity with a LRV < 2 after 40 s of exposure. Overall, in comparison, the UVC LED (275 nm) exhibited superior SARS-CoV-2 disinfection activity than the mercury lamp (254 nm) and the excimer lamp (222 nm).


2021 ◽  
Author(s):  
Divya Kanchibhotla ◽  
Saumya Subramanian ◽  
Ravi Reddy ◽  
Hari Venkatesh K.R. ◽  
Monika Pathania

Abstract Background: COVID-19, caused by SARS-CoV-2 is one of the major health crisis that has affected the world in the past century. With the emergence of new strains of viruses and antimicrobial resistance, the world is looking for an alternate therapeutic option to fight infectious disease.Objective: The present study evaluated the efficacy of a novel polyherbal formulation, named NOQ19, against SARS-CoV-2 in an in vitro setting. NOQ 19 is an unique blend of 13 Ayurvedic herbs.Methodology: Vero E6 (CL1008), the African green monkey kidney epithelial cell, were infected with SARS-CoV-2 virus (isolate USA-WA1/2020) in a 96 well-plate. NOQ19 test material was diluted in different concentration as follows 0.05mg/ml, 0.1mg/ml, 0.2mg/ml, 0.3mg/ml, 0.4mg/ml, 0.5mg/ml, 0.6mg/ml, 0.7mg/ml, 0.8mg/ml and 0.9mg/ml. These different concentrations of NOQ19 were added to infected cells respectively and incubated for 3 days in 5% CO2 incubator. Remdesivir was used as a positive control.The cells were finally fixed with formaldehyde, stained with crystal violet and plaques were visualized. The number of plaques were counted to determine the PFU(plaque forming units)/mL.Results: Results demonstrated 100% antiviral efficacy of NOQ19 at 0.9mg/ml concentration with complete elimination of the virus. The IC50 of the drug was found to be 0.2mg/ml. The results of the present study demonstrated viral load reduction in SARS- CoV-2 infected Vero E6 cell lines.Conclusion: The result along with clinical trials could propose NOQ19 as a potential therapeutic option in the fighting the COVID-19 challenge.


2021 ◽  
Author(s):  
Joshua Victor ◽  
Jamie Deutsch ◽  
Annalis Whitaker ◽  
Erica N. Lamkin ◽  
Anthony March ◽  
...  

AbstractThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.


2021 ◽  
Vol 9 ◽  
Author(s):  
Marcia H. Monaco ◽  
Gabriele Gross ◽  
Sharon M. Donovan

Background: The milk fat globule membrane (MFMG) is a complex milk component that has been shown to inhibit rotavirus (RV) binding to cell membranes in vitro. Herein, a whey protein lipid concentrate high in MFGM components (WPLC) and whey protein concentrate (WPC; control) were screened for anti-infective activity against porcine OSU and human Wa strains of RV in both the African Green Monkey kidney (MA104) and the human colorectal adenocarcinoma (Caco-2) cell lines.Materials and Methods: Confluent cells were exposed to OSU or Wa RV in the presence of WPLC or WPC (control) at 0, 0.1, 0.5, 1.0, 2.5, or 5 mg/ml. Infectivity was detected by immunohistochemistry and expressed as % inhibition relative to 0 mg/ml. WPLC efficacy over WPC was expressed as fold-change. One-way ANOVA analyzed data for the independent and interactive effects of concentration, test material, and RV strain.Results: Both WPLC and WPC exhibited concentration-dependent inhibition of human Wa and porcine OSU RV infectivity in MA104 and Caco-2 cells (p &lt; 0.0001). WPLC was 1.5–4.8-fold more effective in reducing infectivity than WPC. WPLC efficacy was independent of RV strains, but varied between cell lines. WPLC and WPC at concentrations ≥0.5 mg/mL were most effective in reducing human Wa RV infectivity in MA104 cells (p &lt; 0.0001).Conclusions: WPLC decreased infectivity of two strains for RV which differ in their dependency on sialic acid for binding to cells. Inhibition was observed in the most commonly used cell type for RV infectivity assays (MA104) and an intestinal cell line (Caco-2). An effect on virus infectivity might be a potential mechanisms of action contributing to beneficial effects of supplementation of infant formula with MGFM reducing the risk of infections and consequently diarrhea incidence in infants.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 599
Author(s):  
Elise Overgaard ◽  
Brad Morris ◽  
Omid Mohammad Mousa ◽  
Emily Price ◽  
Adriana Rodriguez ◽  
...  

Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonella enterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a number of broad-host-range non-typhoidal Salmonella species and serovars. ArtAB is also homologous to many AB5 toxins from diverse Gram-negative pathogens, including cholera toxin (CT) and pertussis toxin (PT), and may be involved in Salmonella pathogenesis, however, in vitro cellular toxicity of ArtAB has not been characterized. artAB was cloned into E. coli and initially isolated using a histidine tag (ArtABHIS) and nickel chromatography. ArtABHIS was found to bind to African green monkey kidney epithelial (Vero) cells using confocal microscopy and to interact with glycans present on fetuin and monosialotetrahexosylganglioside (GM1) using ELISA. Untagged, or native, holotoxin (ArtAB), and the pentameric receptor-binding subunit (ArtB) were purified from E. coli using fetuin and D-galactose affinity chromatography. ArtAB and ArtB metabolic and cytotoxic activities were determined using Vero and Chinese hamster ovary (CHO) epithelial cells. Vero cells were more sensitive to ArtAB, however, incubation with both cell types revealed only partial cytotoxicity over 72 h, similar to that induced by CT. ArtAB induced a distinctive clustering phenotype on CHO cells over 72 h, similar to PT, and an elongated phenotype on Vero cells, similar to CT. The ArtB binding subunit alone also had a cytotoxic effect on CHO cells and induced morphological rounding. Results indicate that this toxin induces distinctive cellular outcomes. Continued biological characterization of ArtAB will advance efforts to prevent disease caused by non-typhoidal Salmonella.


Author(s):  
Hongbo Liu ◽  
Ming Zhang ◽  
Changzeng Feng ◽  
Shanri Cong ◽  
Danhan Xu ◽  
...  

Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4823
Author(s):  
Juliana M. Rodrigues ◽  
Ricardo C. Calhelha ◽  
António Nogueira ◽  
Isabel C. F. R. Ferreira ◽  
Lillian Barros ◽  
...  

Several novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates were synthesized by Pd-catalyzed C–N Buchwald–Hartwig cross-coupling of either methyl 7-aminothieno[3,2-b]pyrazine-6-carboxylate with (hetero)arylhalides or 7-bromothieno[2,3-b]pyrazine-6-carboxylate with (hetero)arylamines in good-to-excellent yields (50% quantitative yield), using different reaction conditions, namely ligands and solvents, due to the different electronic character of the substrates. The antitumoral potential of these compounds was evaluated in four human tumor cell lines: gastric adenocarcinoma (AGS), colorectal adenocarcinoma (CaCo-2), breast carcinoma (MCF7), and non-small-cell lung carcinoma (NCI-H460) using the SRB assay, and it was possible to establish some structure–activity relationships. Furthermore, they did not show relevant toxicity against a non-tumor cell line culture from the African green monkey kidney (Vero). The most promising compounds (GI50 ≤ 11 µM), showed some selectivity either against AGS or CaCo-2 cell lines without toxicity at their GI50 values. The effects of the methoxylated compounds 2b (2-OMeC6H4), 2f and 2g (3,4- or 3,5-diOMeC6H3, respectively) on the cell cycle profile and induction of apoptosis were further studied in the AGS cell line. Nevertheless, even for the most active (GI50 = 7.8 µM) and selective compound (2g) against this cell line, it was observed that a huge number of dead cells gave rise to an atypical distribution on the cell cycle profile and that these cells were not apoptotic, which points to a different mechanism of action for the AGS cell growth inhibition.


Author(s):  
Arif Nur Muhammad Ansori ◽  
Amaq Fadholly ◽  
Annise Proboningrat ◽  
Suhailah Hayaza ◽  
Raden Joko Kuncoroningrat Susilo ◽  
...  

Dengue is a major mosquito-borne disease that currently has no effective antiviral or vaccine available. Recently, Indonesia is one of the largest countries in the dengue-endemic region, with a total population of more than 250 million. In the present study, the antiviral activity of P. merkusii stem bark and cone were evaluated against dengue virus type-2 (DENV-2; NCBI accession number: KT012509) isolated from Surabaya, Indonesia. We revealed that P. merkusii stem bark and cone inhibited DENV-2 in Vero cells (originally from African green monkey kidney) with IC50= 140.63 μg/mL and 73.78 μg/mL, CC50= 89.65 μg/mL and 249.5 μg/mL, SI= 0.64 and 3.38, respectively. The findings presented here suggest that P. merkusii stem bark and cone exerts potent antiviral activity against DENV-2. Hence, P. merkusii stem bark and cone are potent to inhibit DENV-2 and should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV-2.


2021 ◽  
Author(s):  
Erin E. Schirtzinger ◽  
Yunjeong Kim ◽  
A. Sally Davis

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has renewed interest in human coronaviruses that cause the common cold, particularly as research with them at biosafety level (BSL)-2 avoids the added costs and biosafety concerns that accompany work with SARS-COV-2, BSL-3 research. One of these, human coronavirus OC43 (HCoV-OC43), is a well-matched surrogate for SARS-CoV-2 because it is also a Betacoronavirus, targets the human respiratory system, is transmitted via respiratory aerosols and droplets and is relatively resistant to disinfectants. Unfortunately, growth of HCoV-OC43 in the recommended human colon cancer (HRT-18) cells does not produce obvious cytopathic effect (CPE) and its titration in these cells requires expensive antibody-based detection. Consequently, multiple quantification approaches for HCoV-OC43 using alternative cell lines exist, which complicates comparison of research results. Hence, we investigated the basic growth parameters of HCoV-OC43 infection in three of these cell lines (HRT-18, human lung fibroblasts (MRC-5) and African green monkey kidney (Vero E6) cells) including the differential development of cytopathic effect (CPE) and explored reducing the cost, time and complexity of antibody-based detection assay. Multi-step growth curves were conducted in each cell type in triplicate at a multiplicity of infection of 0.1 with daily sampling for seven days. Samples were quantified by tissue culture infectious dose50(TCID50)/ml or plaque assay (cell line dependent) and additionally analyzed on the Sartorius Virus Counter 3100 (VC), which uses flow virometry to count the total number of intact virus particles in a sample. We improved the reproducibility of a previously described antibody-based detection based TCID50 assay by identifying commercial sources for antibodies, decreasing antibody concentrations and simplifying the detection process. The growth curves demonstrated that HCoV-O43 grown in MRC-5 cells reached a peak titer of ~107 plaque forming units/ml at two days post infection (dpi). In contrast, HCoV-OC43 grown on HRT-18 cells required six days to reach a peak titer of ~106.5 TCID50/ml. HCoV-OC43 produced CPE in Vero E6 cells but these growth curve samples failed to produce CPE in a plaque assay after four days. Analysis of the VC data in combination with plaque and TCID50 assays together revealed that the defective:infectious virion ratio of MRC-5 propagated HCoV-OC43 was less than 3:1 for 1-6 dpi while HCoV-OC43 propagated in HRT-18 cells varied from 41:1 at 1 dpi, to 329:4 at 4 dpi to 94:1 at 7 dpi. These results should enable better comparison of extant HCoV-OC43 study results and prompt further standardization efforts.


Sign in / Sign up

Export Citation Format

Share Document