scholarly journals Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein.

1991 ◽  
Vol 11 (5) ◽  
pp. 2665-2674 ◽  
Author(s):  
A S Perkins ◽  
R Fishel ◽  
N A Jenkins ◽  
N G Copeland

Evi-1 was originally identified as a common site of viral integration in murine myeloid tumors. Evi-1 encodes a 120-kDa polypeptide containing 10 zinc finger motifs located in two domains 380 amino acids apart and an acidic domain located carboxy terminal to the second set of zinc fingers. These features suggest that Evi-1 is a site-specific DNA-binding protein involved in the regulation of RNA transcription. We have purified Evi-1 protein from E. coli and have employed a gel shift-polymerase chain reaction method using random oligonucleotides to identify a high-affinity binding site for Evi-1. The consensus sequence for this binding site is TGACAAGATAA. Evi-1 protein specifically protects this motif from DNase I digestion. By searching the nucleotide sequence data bases, we have found this binding site both in sequences 5' to genes in putative or known regulatory regions and within intron sequences.

1991 ◽  
Vol 11 (5) ◽  
pp. 2665-2674
Author(s):  
A S Perkins ◽  
R Fishel ◽  
N A Jenkins ◽  
N G Copeland

Evi-1 was originally identified as a common site of viral integration in murine myeloid tumors. Evi-1 encodes a 120-kDa polypeptide containing 10 zinc finger motifs located in two domains 380 amino acids apart and an acidic domain located carboxy terminal to the second set of zinc fingers. These features suggest that Evi-1 is a site-specific DNA-binding protein involved in the regulation of RNA transcription. We have purified Evi-1 protein from E. coli and have employed a gel shift-polymerase chain reaction method using random oligonucleotides to identify a high-affinity binding site for Evi-1. The consensus sequence for this binding site is TGACAAGATAA. Evi-1 protein specifically protects this motif from DNase I digestion. By searching the nucleotide sequence data bases, we have found this binding site both in sequences 5' to genes in putative or known regulatory regions and within intron sequences.


1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217 ◽  
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 10 (10) ◽  
pp. 5226-5234 ◽  
Author(s):  
Q D Ju ◽  
B E Morrow ◽  
J R Warner

REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.


2013 ◽  
Vol 425 (16) ◽  
pp. 2823-2839 ◽  
Author(s):  
Senthil K. Perumal ◽  
Scott W. Nelson ◽  
Stephen J. Benkovic

2002 ◽  
Vol 368 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Dorina AVRAM ◽  
Andrew FIELDS ◽  
Thanaset SENAWONG ◽  
Acharawan TOPARK-NGARM ◽  
Mark LEID

Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C2H2 zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5′-GGCCGG-3′ (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems.


FEBS Letters ◽  
1993 ◽  
Vol 321 (2-3) ◽  
pp. 233-236 ◽  
Author(s):  
Gina Pengue ◽  
Paola Cannada-Bartoli ◽  
Luigi Lania

1997 ◽  
Vol 110 (9) ◽  
pp. 1051-1062 ◽  
Author(s):  
A. Kohler ◽  
M.S. Schmidt-Zachmann ◽  
W.W. Franke

Using a specific monoclonal antibody (mAb AND-1/23-5-14) we have identified, cDNA-cloned and characterized a novel DNA-binding protein of the clawed toad, Xenopus laevis, that is accumulated in the nucleoplasm of oocytes and various other cells. This protein comprises 1,127 amino acids, with a total molecular mass of 125 kDa and a pI of 5.27. It is encoded by a mRNA of approximately 4 kb and contains, in addition to clusters of acidic amino acids, two hallmark motifs: the amino-terminal part harbours seven consecutive ‘WD-repeats’, which are sequence motifs of about 40 amino acids that are characteristic of a large group of regulatory proteins involved in diverse cellular functions, while the carboxy terminal portion possesses a 63-amino-acid-long ‘HMG-box’, which is typical of a family of DNA-binding proteins involved in regulation of chromatin assembly, transcription and replication. The DNA-binding capability of the protein was demonstrated by DNA affinity chromatography and electrophoretic mobility shift assays using four-way junction DNA. Protein AND-1 (acidic nucleoplasmic DNA-binding protein) appears as an oligomer, probably a homodimer, and has been localized throughout the entire interchromatinic space of the interphase nucleoplasm, whereas during mitosis it is transiently dispersed over the cytoplasm. We also identified a closely related, perhaps orthologous protein in mammals. The unique features of protein AND-1, which is a ‘natural chimera’ combining properties of the WD-repeat and the HMG-box families of proteins, are discussed in relation to its possible nuclear functions.


Sign in / Sign up

Export Citation Format

Share Document