AND-1, a natural chimeric DNA-binding protein, combines an HMG-box with regulatory WD-repeats

1997 ◽  
Vol 110 (9) ◽  
pp. 1051-1062 ◽  
Author(s):  
A. Kohler ◽  
M.S. Schmidt-Zachmann ◽  
W.W. Franke

Using a specific monoclonal antibody (mAb AND-1/23-5-14) we have identified, cDNA-cloned and characterized a novel DNA-binding protein of the clawed toad, Xenopus laevis, that is accumulated in the nucleoplasm of oocytes and various other cells. This protein comprises 1,127 amino acids, with a total molecular mass of 125 kDa and a pI of 5.27. It is encoded by a mRNA of approximately 4 kb and contains, in addition to clusters of acidic amino acids, two hallmark motifs: the amino-terminal part harbours seven consecutive ‘WD-repeats’, which are sequence motifs of about 40 amino acids that are characteristic of a large group of regulatory proteins involved in diverse cellular functions, while the carboxy terminal portion possesses a 63-amino-acid-long ‘HMG-box’, which is typical of a family of DNA-binding proteins involved in regulation of chromatin assembly, transcription and replication. The DNA-binding capability of the protein was demonstrated by DNA affinity chromatography and electrophoretic mobility shift assays using four-way junction DNA. Protein AND-1 (acidic nucleoplasmic DNA-binding protein) appears as an oligomer, probably a homodimer, and has been localized throughout the entire interchromatinic space of the interphase nucleoplasm, whereas during mitosis it is transiently dispersed over the cytoplasm. We also identified a closely related, perhaps orthologous protein in mammals. The unique features of protein AND-1, which is a ‘natural chimera’ combining properties of the WD-repeat and the HMG-box families of proteins, are discussed in relation to its possible nuclear functions.

1989 ◽  
Vol 9 (10) ◽  
pp. 4372-4380 ◽  
Author(s):  
N Morin ◽  
C Delsert ◽  
D F Klessig

The adenovirus DNA-binding protein (DBP) is an abundant multifunctional protein located primarily in the nuclei of infected cells. To define sequences involved in nuclear transport of DBP, a series of point and small deletion mutants were constructed via oligonucleotide-directed mutagenesis. Two short stretches of basic amino acids located in the amino-terminal domain (amino acids 42 to 46 and 84 to 89) were identified. Their importance, however, depended on the context in which DBP was expressed. Disruption of either site prevented nuclear localization after transient expression in transfected 293 cells, implying that two nuclear localization signals are necessary for transport of this nuclear protein. In contrast, the mutant DBPs synthesized during viral infection were located either primarily in the nucleus or in the nucleus and cytoplasm, depending on the mutation and the stage of the viral infection. Thus, the nuclear localization defect could be complemented by viral infection, perhaps through the interaction of the mutant polypeptide with a virus-encoded or -induced factor(s).


1989 ◽  
Vol 9 (10) ◽  
pp. 4372-4380
Author(s):  
N Morin ◽  
C Delsert ◽  
D F Klessig

The adenovirus DNA-binding protein (DBP) is an abundant multifunctional protein located primarily in the nuclei of infected cells. To define sequences involved in nuclear transport of DBP, a series of point and small deletion mutants were constructed via oligonucleotide-directed mutagenesis. Two short stretches of basic amino acids located in the amino-terminal domain (amino acids 42 to 46 and 84 to 89) were identified. Their importance, however, depended on the context in which DBP was expressed. Disruption of either site prevented nuclear localization after transient expression in transfected 293 cells, implying that two nuclear localization signals are necessary for transport of this nuclear protein. In contrast, the mutant DBPs synthesized during viral infection were located either primarily in the nucleus or in the nucleus and cytoplasm, depending on the mutation and the stage of the viral infection. Thus, the nuclear localization defect could be complemented by viral infection, perhaps through the interaction of the mutant polypeptide with a virus-encoded or -induced factor(s).


1991 ◽  
Vol 11 (5) ◽  
pp. 2665-2674 ◽  
Author(s):  
A S Perkins ◽  
R Fishel ◽  
N A Jenkins ◽  
N G Copeland

Evi-1 was originally identified as a common site of viral integration in murine myeloid tumors. Evi-1 encodes a 120-kDa polypeptide containing 10 zinc finger motifs located in two domains 380 amino acids apart and an acidic domain located carboxy terminal to the second set of zinc fingers. These features suggest that Evi-1 is a site-specific DNA-binding protein involved in the regulation of RNA transcription. We have purified Evi-1 protein from E. coli and have employed a gel shift-polymerase chain reaction method using random oligonucleotides to identify a high-affinity binding site for Evi-1. The consensus sequence for this binding site is TGACAAGATAA. Evi-1 protein specifically protects this motif from DNase I digestion. By searching the nucleotide sequence data bases, we have found this binding site both in sequences 5' to genes in putative or known regulatory regions and within intron sequences.


1990 ◽  
Vol 10 (10) ◽  
pp. 5226-5234 ◽  
Author(s):  
Q D Ju ◽  
B E Morrow ◽  
J R Warner

REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2611-2617 ◽  
Author(s):  
Susan E. Lyons ◽  
Bixiong C. Shue ◽  
Andrew C. Oates ◽  
Leonard I. Zon ◽  
P. Paul Liu

Abstract The CCAAT/enhancer-binding protein (C/EBP) family consists of transcription factors essential for hematopoiesis. The defining feature of the C/EBPs is a highly conserved carboxy-terminal bZIP domain that is necessary and sufficient for dimerization and DNA binding, whereas their amino-terminal domains are unique. This study reports a novelc/ebp gene (c/ebp1) from zebrafish that encodes a protein homologous to mammalian C/EBPs within the bZIP domain, but with an amino terminus lacking homology to any C/EBP or to any known sequence. In zebrafish embryos, c/ebp1 expression was initially observed in cells within the yolk sac circulation valley at approximately the 16-to 18-somite stage, and at 24 hours postfertilization (hpf), also in circulating cells. Mostc/ebp1+cells also expressed a known early macrophage marker, leukocyte-specific plastin (l-plastin). Expression of both markers was lost in cloche, a mutant affecting hematopoiesis at the level of the hemangioblast. Expression of both markers was retained in m683 andspadetail, mutants affecting erythropoiesis, but not myelopoiesis. Further, c/ebp1 expression was lost in a mutant with defective myelopoiesis, but intact erythropoiesis. These data suggest that c/ebp1 is expressed exclusively in myeloid cells. In electrophoretic mobility shift assays, c/ebp1 was able to bind a C/EBP consensus DNA site. Further, a chimeric protein containing the amino-terminal domain of c/ebp1 fused to the DNA-binding domain of GAL4 induced a GAL4 reporter 4000-fold in NIH3T3 cells. These results suggest that c/ebp1 is a novel member of the C/EBP family that may function as a potent transcriptional activator in myeloid cells.


2013 ◽  
Vol 425 (16) ◽  
pp. 2823-2839 ◽  
Author(s):  
Senthil K. Perumal ◽  
Scott W. Nelson ◽  
Stephen J. Benkovic

2015 ◽  
Vol 291 (2) ◽  
pp. 924-938 ◽  
Author(s):  
Ana P. G. Silva ◽  
Daniel P. Ryan ◽  
Yaron Galanty ◽  
Jason K. K. Low ◽  
Marylene Vandevenne ◽  
...  

1988 ◽  
Vol 8 (5) ◽  
pp. 2125-2131
Author(s):  
L T Bemis ◽  
C L Denis

The transcriptional activator ADR1 from Saccharomyces cerevisiae is a postulated DNA-binding protein that controls the expression of the glucose-repressible alcohol dehydrogenase (ADH2). Carboxy-terminal deletions of the ADR1 protein (1,323 amino acids in length) were used to localize its functional regions. The transcriptional activation region was localized to the N-terminal 220 amino acids of ADR1 containing two DNA-binding zinc finger motifs. In addition to the N terminus, a large part of the ADR1 sequence was shown to be essential for complete activation of ADH2. Deletion of the putative phosphorylation region, defined by ADR1c mutations that overcome glucose repression, did not render ADH2 expression insensitive to glucose repression. Instead, this region (amino acids 220 through 253) was found to be required by ADR1 to bypass glucose repression. These results suggest that ADR1c mutations enhance ADR1 function, rather than block an interaction of the putative phosphorylation region with a repressor molecule. Furthermore, the protein kinase CCR1 was shown to affect ADH2 expression when the putative phosphorylation region was removed, indicating that CCR1 does not act solely through this region. A functional ADR1 gene was also found to be necessary for growth on glycerol-containing medium. The N-terminal 506 amino acids of ADR1 were required for this newly identified function, indicating that ADH2 activation and glycerol growth are controlled by separate regions of ADR1.


Sign in / Sign up

Export Citation Format

Share Document