scholarly journals A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs.

1991 ◽  
Vol 11 (7) ◽  
pp. 3407-3418 ◽  
Author(s):  
J C Vera ◽  
G R Castillo ◽  
O M Rosen

We show that D- but not L-hexoses modulate the accumulation of radioactive vinblastine in injected Xenopus laevis oocytes expressing the murine Mdr1b P-glycoprotein. We also show that X. laevis oocytes injected with RNA encoding the rat erythroid/brain glucose transport protein (GLUT1) and expressing the corresponding functional transporter exhibit a lower accumulation of [3H]vinblastine and show a greater capacity to extrude the drug than do control oocytes not expressing the rat GLUT1 protein. Cytochalasin B and phloretin, two inhibitors of the mammalian facilitative glucose transporters, can overcome the reduced drug accumulation conferred by expression of the rat GLUT1 protein in Xenopus oocytes but have no significant effect on the accumulation of drug by Xenopus oocytes expressing the mouse Mdr1b P-glycoprotein. These drugs also increase the accumulation of [3H]vinblastine in multidrug-resistant Chinese hamster ovary cells. Cytochalasin E, an analog of cytochalasin B that does not affect the activity of the facilitative glucose transporter, has no effect on the accumulation of vinblastine by multidrug-resistant Chinese hamster cells or by oocytes expressing either the mouse Mdr1b P-glycoprotein or the GLUT1 protein. In all three cases, the drug verapamil produces a profound effect on the cellular accumulation of vinblastine. Interestingly, although immunological analysis indicated the presence of massive amounts of P-glycoprotein in the multidrug-resistant cells, immunological and functional studies revealed only a minor increase in the expression of a hexose transporter-like protein in resistant versus drug-sensitive cells. Taken together, these results suggest the participation of the mammalian facilitative glucose transporter in the development of drug resistance.

1991 ◽  
Vol 11 (7) ◽  
pp. 3407-3418
Author(s):  
J C Vera ◽  
G R Castillo ◽  
O M Rosen

We show that D- but not L-hexoses modulate the accumulation of radioactive vinblastine in injected Xenopus laevis oocytes expressing the murine Mdr1b P-glycoprotein. We also show that X. laevis oocytes injected with RNA encoding the rat erythroid/brain glucose transport protein (GLUT1) and expressing the corresponding functional transporter exhibit a lower accumulation of [3H]vinblastine and show a greater capacity to extrude the drug than do control oocytes not expressing the rat GLUT1 protein. Cytochalasin B and phloretin, two inhibitors of the mammalian facilitative glucose transporters, can overcome the reduced drug accumulation conferred by expression of the rat GLUT1 protein in Xenopus oocytes but have no significant effect on the accumulation of drug by Xenopus oocytes expressing the mouse Mdr1b P-glycoprotein. These drugs also increase the accumulation of [3H]vinblastine in multidrug-resistant Chinese hamster ovary cells. Cytochalasin E, an analog of cytochalasin B that does not affect the activity of the facilitative glucose transporter, has no effect on the accumulation of vinblastine by multidrug-resistant Chinese hamster cells or by oocytes expressing either the mouse Mdr1b P-glycoprotein or the GLUT1 protein. In all three cases, the drug verapamil produces a profound effect on the cellular accumulation of vinblastine. Interestingly, although immunological analysis indicated the presence of massive amounts of P-glycoprotein in the multidrug-resistant cells, immunological and functional studies revealed only a minor increase in the expression of a hexose transporter-like protein in resistant versus drug-sensitive cells. Taken together, these results suggest the participation of the mammalian facilitative glucose transporter in the development of drug resistance.


1995 ◽  
Vol 312 (3) ◽  
pp. 687-691 ◽  
Author(s):  
M P Barrett ◽  
E Tetaud ◽  
A Seyfang ◽  
F Bringaud ◽  
T Baltz

The gene encoding THT2, one of two hexose-transporter isoforms present in Trypanosoma brucei, has been expressed in both Xenopus laevis oocytes and a stably transfected line of Chinese hamster ovary (CHO) cells. The heterologously expressed gene encodes a protein with pharmacological and kinetic parameters similar to those of the hexose transporter measured in procyclic-culture-form trypanosomes. The substrate recognition of the THT2 transporter differed from that of the THT1 isoform, which is expressed only in bloodstream forms, in that: (i) it has a relatively high affinity for substrate with a Km of 59 microM for 2-deoxy-D-glucose (2-DOG) and a similar high affinity for D-glucose (compared with Km of 0.5 mM for 2-DOG in bloodstream forms); (ii) the affinity for 6-deoxy-D-glucose (6-DOG) is two orders of magnitude lower than that for D-glucose, whereas the bloodstream-form transporter recognizes D-glucose and its 6-DOG analogue with similar affinity; (iii) the bloodstream-form transporter, but not THT2, recognizes 3-fluoro-3-deoxy-D-glucose. D-Fructose-transport capacity and insensitivity to D-galactose was also found in THT2-expressing CHO cells and procyclic trypanosomes. We conclude from these cumulative results that the THT2 gene encodes the transporter responsible for hexose transport in procyclic trypanosomes. The transport of 2-DOG in procyclic organisms was inhibited by both the protonophore, carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP), and KCN, suggesting a requirement for a protonmotive force. However, sensitivity to these reagents depended on the external substrate concentration, with uptake being unaffected at substrate concentrations higher than 2 mM. THT2 expressed in CHO cells behaved as a facilitated transporter, and was unaffected by FCCP or KCN over the whole substrate concentration range tested.


1994 ◽  
Vol 302 (2) ◽  
pp. 355-361 ◽  
Author(s):  
K Inukai ◽  
T Asano ◽  
H Katagiri ◽  
M Anai ◽  
M Funaki ◽  
...  

A mutated GLUT1 glucose transporter, a Trp-388, 412 mutant whose tryptophans 388 and 412 were both replaced by leucines, was constructed by site-directed mutagenesis and expressed in Chinese hamster ovary cells. Glucose transport activity was decreased to approx. 30% in the Trp-388, 412 mutant compared with that in the wild type, a similar decrease in transport activity had been observed previously in the Trp-388 mutant and the Trp-412 mutant which had leucine at 388 and 412 respectively. Cytochalasin B labelling of the Trp-388 mutant was only decreased rather than abolished, a result similar to that obtained previously for the Trp-412 mutant. Cytochalasin B labelling was finally abolished completely in the Trp-388, 412 mutant, while cytochalasin B binding to this mutant was decreased to approx. 30% of that of the wild-type GLUT1 at the concentration used for photolabelling. This level of binding is thought to be adequate to detect labelling, assuming that the labelling efficiency of these transporters is similar. These findings suggest that cytochalasin B binds to the transmembrane domain of the glucose transporter in the vicinity of helix 10-11, and is inserted covalently by photoactivation at either the 388 or the 412 site.


1998 ◽  
Vol 274 (6) ◽  
pp. F1127-F1139 ◽  
Author(s):  
Jeffrey H. M. Charuk ◽  
Arthur A. Grey ◽  
Reinhart A. F. Reithmeier

P-glycoprotein (Mdr1p) is an ATP-dependent drug efflux pump that is overexpressed in multidrug-resistant cells and some cancers. Mdr1p is also expressed in normal tissues like the kidney, where it can mediate transepithelial drug transport. A human urinary compound that reverses multidrug resistance and blocks [3H]azidopine photolabeling of P-glycoprotein was purified to homogeneity and identified by 1H-NMR and mass spectrometry as the synthetic surfactant nonylphenol ethoxylate (NPE). Multidrug-resistant Chinese hamster ovary (CHO) C5 cells accumulated less [3H]NPE than parental drug-sensitive Aux-B1 cells, and Mdr1p substrates, verapamil and cyclosporin A, increased this surfactant’s accumulation in C5 cells. NPE blocked the net transepithelial transport (basolateral to apical) of [3H]cyclosporin A in epithelia formed by Madin-Darby canine kidney (MDCK) cells. Net transepithelial transport (basal to apical) of [3H]NPE was demonstrated in MDCK cells and was inhibited by cyclosporin A. These findings show NPE is a Mdr1p substrate excreted into urine by kidney P-glycoprotein. NPE is a widely used surfactant and a known hormone disrupter that is readily absorbed orally or topically. The current findings indicate the function of kidney Mdr1p may be to eliminate exogenous compounds from the body.


1990 ◽  
Vol 39 (11) ◽  
pp. 1641-1645 ◽  
Author(s):  
Rheem D. Medh ◽  
Vicram Gupta ◽  
Yin Zhang ◽  
Yogesh C. Awasthi ◽  
James A. Belli

1989 ◽  
Vol 9 (10) ◽  
pp. 4187-4195 ◽  
Author(s):  
J C Vera ◽  
O M Rosen

We report the functional expression of two different mammalian facilitative glucose transporters in Xenopus oocytes. The RNAs encoding the rat brain and liver glucose transporters were transcribed in vitro and microinjected into Xenopus oocytes. Microinjected cells showed a marked increase in 2-deoxy-D-glucose uptake as compared with controls injected with water. 2-Deoxy-D-glucose uptake increased during the 5 days after microinjection of the RNAs, and the microinjected RNAs were stable for at least 3 days. The expression of functional glucose transporters was dependent on the amount of RNA injected. The oocyte-expressed transporters could be immunoprecipitated with anti-brain and anti-liver glucose transporter-specific antibodies. Uninjected oocytes expressed an endogenous transporter that appeared to be stereospecific and inhibitable by cytochalasin B. This transporter was kinetically and immunologically distinguishable from both rat brain and liver glucose transporters. The uniqueness of this transporter was confirmed by Northern (RNA) blot analysis. The endogenous oocyte transporter was responsive to insulin and to insulinlike growth factor I. Most interestingly, both the rat brain and liver glucose transporters, which were not insulin sensitive in the tissues from which they were cloned, responded to insulin in the oocyte similarly to the endogenous oocyte transporter. These data suggest that the insulin responsiveness of a given glucose transporter depends on the type of cell in which the protein is expressed. The expression of hexose transporters in the microinjected oocytes may help to identify tissue-specific molecules involved in hormonal alterations in hexose transport activity.


1992 ◽  
Vol 288 (1) ◽  
pp. 189-193 ◽  
Author(s):  
T Asano ◽  
H Katagiri ◽  
K Takata ◽  
K Tsukuda ◽  
J L Lin ◽  
...  

We have expressed GLUT3 protein, an isoform of a facilitative glucose transporter, in Chinese hamster ovary cells by transfection of its cDNA using an expression vector. The expressed GLUT3 protein was detected by Western-blot analysis as a broad band of 45-65 kDa, indicating intensive glycosylation of the protein. The expressed GLUT3 protein was observed, by immunofluorescence staining, to be located mainly at the plasma membrane, and its expression was associated with a marked increase in glucose-transport activity. Kinetic analysis revealed that the Km value of GLUT3 protein for 3-O-methylglucose uptake was approx. 35% of that of GLUT1 protein, whereas the Km value of GLUT3 protein for 2-deoxy-D-glucose uptake was very similar to that of GLUT1 protein. The Vmax. value of GLUT3 protein for 3-O-methylglucose and 2-deoxyglucose uptake was approx. 20-50% of that of GLUT1 protein. GLUT3 protein was well photolabelled with [3H]cytochalasin B or a mannose derivative, 2-N-4-[3H](1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos -4-yloxy)-2- propylamine. Thus GLUT3 protein has very similar characteristics to GLUT1 protein including its subcellular localization, but exhibits lower Km and Vmax. values for 3-O-methylglucose uptake.


Sign in / Sign up

Export Citation Format

Share Document