Signals that produce 3' termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae

1993 ◽  
Vol 13 (12) ◽  
pp. 7836-7849
Author(s):  
P Russo ◽  
W Z Li ◽  
Z Guo ◽  
F Sherman

The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.

1993 ◽  
Vol 13 (12) ◽  
pp. 7836-7849 ◽  
Author(s):  
P Russo ◽  
W Z Li ◽  
Z Guo ◽  
F Sherman

The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229 ◽  
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 531-540
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II (ADH2) gene of the yeast, Saccharomyces cerevisiae, is not transcribed during growth on fermentable carbon sources such as glucose. Growth of yeast cells in a medium containing only nonfermentable carbon sources leads to a marked increase or derepression of ADH2 expression. The recessive mutation, adr6-1, leads to an inability to fully derepress ADH2 expression and to an inability to sporulate. The ADR6 gene product appears to act directly or indirectly on ADH2 sequences 3' to or including the presumptive TATAA box. The upstream activating sequence (UAS) located 5' to the TATAA box is not required for the Adr6- phenotype. Here, we describe the isolation of a recombinant plasmid containing the wild-type ADR6 gene. ADR6 codes for a 4.4-kb RNA which is present during growth both on glucose and on nonfermentable carbon sources. Disruption of the ADR6 transcription unit led to viable cells with decreased ADHII activity and an inability to sporulate. This indicates that both phenotypes result from mutations within a single gene and that the adr6-1 allele was representative of mutations at this locus. The ADR6 gene mapped to the left arm of chromosome XVI at a site 18 centimorgans from the centromere.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1995 ◽  
Vol 15 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
Z Guo ◽  
F Sherman

It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1991 ◽  
Vol 11 (5) ◽  
pp. 2736-2743
Author(s):  
H Xu ◽  
J D Boeke

The Ty1 elements in the yeast Saccharomyces cerevisiae are a family of retrotransposons which transpose via a process similar to that of retroviral replication. We report here that the Ty1 transposition process can be blocked posttranscriptionally by treatment of cells with mating pheromones. When haploid yeast cells are treated with appropriate mating pheromones, the transposition frequency of a marked Ty1 element driven by the GAL1 promoter is greatly diminished. Ty1 viruslike particles (VLPs), the putative intermediates for transposition, can be isolated from mating pheromone-treated cells. These VLPs accumulate to normal levels but are aberrant in that they produce very few reverse transcripts of Ty1 RNA both in vivo and in vitro and contain subnormal amounts of p90-TYB and related proteins. In addition, a TYA phosphoprotein product accumulates in treated cells, and some species of TYB proteins have decreased stability. We also show that decreased transposition in mating pheromone-treated cells is not a consequence of simply blocking cell division, since Ty1 transposes at a nearly normal rate in yeast cells arrested in G2 by the drug nocodazole.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1991 ◽  
Vol 11 (5) ◽  
pp. 2736-2743 ◽  
Author(s):  
H Xu ◽  
J D Boeke

The Ty1 elements in the yeast Saccharomyces cerevisiae are a family of retrotransposons which transpose via a process similar to that of retroviral replication. We report here that the Ty1 transposition process can be blocked posttranscriptionally by treatment of cells with mating pheromones. When haploid yeast cells are treated with appropriate mating pheromones, the transposition frequency of a marked Ty1 element driven by the GAL1 promoter is greatly diminished. Ty1 viruslike particles (VLPs), the putative intermediates for transposition, can be isolated from mating pheromone-treated cells. These VLPs accumulate to normal levels but are aberrant in that they produce very few reverse transcripts of Ty1 RNA both in vivo and in vitro and contain subnormal amounts of p90-TYB and related proteins. In addition, a TYA phosphoprotein product accumulates in treated cells, and some species of TYB proteins have decreased stability. We also show that decreased transposition in mating pheromone-treated cells is not a consequence of simply blocking cell division, since Ty1 transposes at a nearly normal rate in yeast cells arrested in G2 by the drug nocodazole.


Sign in / Sign up

Export Citation Format

Share Document